

MIÉRCOLES 12 Y JUEVES 13 DE ABRIL

Contaminantes Agroindustriales

Prof. Jesús Olivero Verbel. Ph.D Universidad de Cartagena

Acreditación Institucional de Alta Calidad tesolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

US EPA – PESTICIDE

Any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest. The term pest means any harmful, destructive, or troublesome animals, plants, or microorganisms.

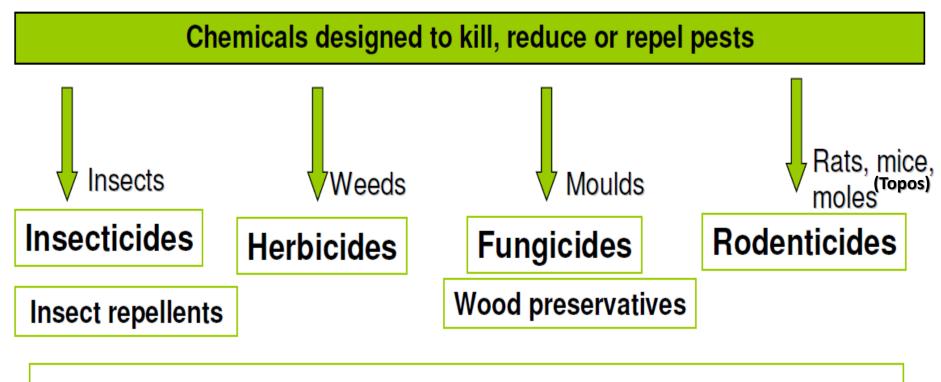
Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

PESTICIDES – RISKS AND BENEFITS

BENEFITS

- Crop protection
- Food preservation
- Material preservation
- Disease control

<u>RISKS</u>


- Toxic to humans
- Impact on environment and ecosystems

Acreditación Institucional de Alta Calidad esolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacion

PESTICIDES – CLASSIFICATION BY USE

Fumigants

PESTICIDES – CLASSIFICATION BY USE AND CHEMICAL STRUCTURE

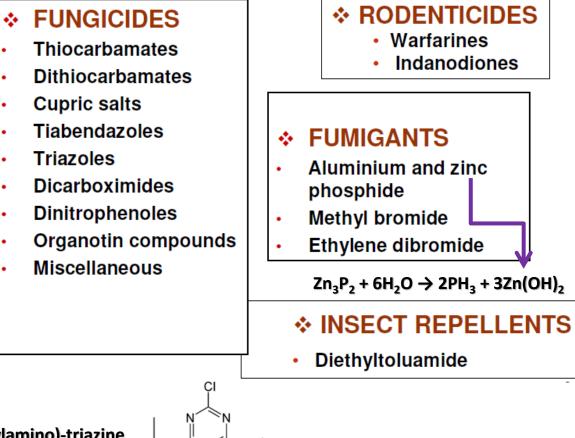
Different chemicals used for different purposes

٠

٠

٠

٠


٠

✤ INSECTICIDES

- **Pyrethroids**
- Organophosphorus
- Carbamates ٠
- Organochlorine
- Manganese compounds

HERBICIDES •••

- Bipyridyls
- Chlorophenoxy
- Glyphosate
- Acetanilides
- Triazines

Atrazine, 2-chloro-4-(ethylamino)-6-(isopropylamino)-triazine

Basic Classes of Pesticides

—с____ о—нg—сн₂—сн₃

-Ha—CHa

Insecticides

Organochlorines Organophosphates Carbamate Esters Pyrethroids <u>Botanical Insectici</u>des

Herbicides

Chlorophenoxy compounds Bipyridyl derivatives

Rodenticides

Zinc Phosphide Fluoroacetic acid and derivatives α-Napthyl Thiourea (ANTU) Anticoagulants Fungicides Hexac

Hexachlorobenzene Organomercurials Pentachlorophenol Phthalimides Dithiocarbamates

Fumigants Phosphine Ethylene dibromide Dibromochloropropane

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

Table 1 The main groups of pesticides.

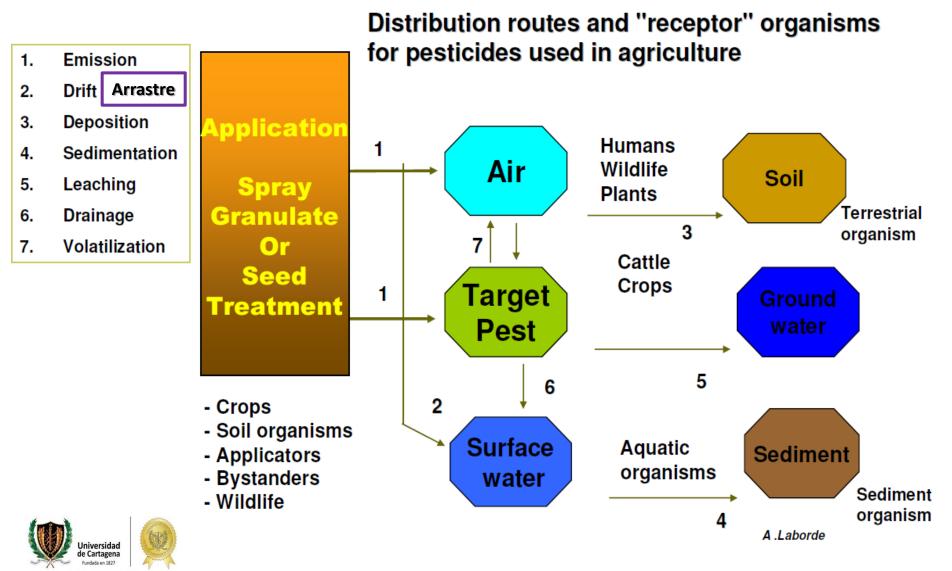
Pesticides

Group	Subgroups	Examples
Organochlorines (OCs)		DDT Endrin Aldrin Dieldrin Endosulfan ?-Hexachlorocyclohexane (lindane)
Anticholinesterases	Organophosphates (OPs)	Malathion Fenitrothion Dichlorvos Diazinon
	Carbamates	Carbaryl Aldicarb
Pyrethrins and synthetic pyrethroids		Pyrethrum Permethrin Cypermethrin Flumethrin
Natural compounds, other than pyrethrins		Abamectin Ivermectin Rotenone Nicotine
Substances which interfere with systems specific to insects	Juvenile hormone analogues Chitin synthesis inhibitors Ecdysone agonists	Cyromazine Diflubenzuron Tebufenozide
Miscellaneous synthetic insecticides	Formamidine GABA _A blocker	Amitraz Fipronil Universidad de Cartagena Fundade en 1827

SOME PESTICIDES PERSIST AND BIOCONCENTRATE

PERSISTENT ORGANIC POLLUTANTS (POPs)

- Low water solubility
- Persist in the environment
- Accumulate in the food-chain
- Lypophilic
- Travel long distances
- Concentrate in marine animals
- May produce toxic effects



Aldrin Dieldrin Chlordane DDT Endrin Heptachlor Mirex Toxaphene

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

ORIGIN, TRANSPORT AND FATE

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Naci

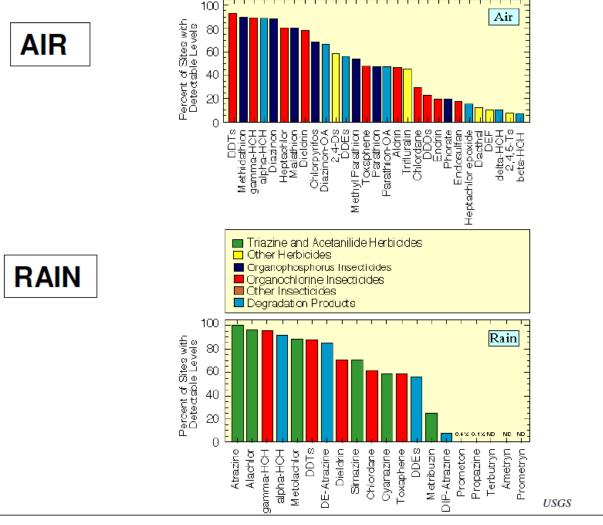
PESTICIDES IN DIFFERENT MEDIA Food residues

- Many food products have detectable levels of pesticides
- Guideline levels of pesticides in food (MRL)
- Guidelines to limit the population exposure: acceptable daily intake (ADI)

esolución 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

The Dirty Dozen





The Dirty Dozen

PESTICIDES IN THE ATMOSPHERE

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

CHILDREN'S EXPOSURE

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

A cause of concern

- Multiple chemicals
- Multiple sources of exposure
- Multiple routes of exposure
- Multiple effects

WHO

CHILDREN'S ENVIRONMENTAL EXPOSURE

- Pesticides in: homes and schools, playgrounds, parks fields, hospitals and other public places
- Children in: farms, agricultural areas (rural setting)
- Pesticides present in: air, soil, food, water, parents' clothing and shoes, other objects...

SOURCES AND SETTINGS OF EXPOSURE...

HOME, SCHOOL, DAY-CARE, INSTITUTIONS, ...

Indoor and outdoor application

- Mosquito control
- Professional/domestic application
 Health uses
 - Lice or scabies (Sarna)
 - Fleas or ticks on pets

Pesticide residues

- Dust, soil, furniture, carpets, toys, food...
- Playgrounds, playing fields, lawns, gardens
- Wood preservatives in play structures (e.g. PCP: pentachlorophenol)
- Long range transport of POPs (e.g. DDT)

reditación Institucional de Alta Calidad 26 de febrero de 2014. Ministerio de Educación

ROUTES OF EXPOSURE

Multiple/simultaneous routes of exposure

- ♦ Ingestion
- Inhalation
- Dermal absorption

Transplacental PERINATAL EXPOSURE

- Mother's intake and body burden is transferred across the placenta
- Breast milk may be contaminated "The very top of the food chain"

- Breastfeeding
- Accidental ingestion
- Residues in food
- Mouthing
- Indoor and outdoor spraying
 Occupational exposure
 - Accidental contact
- Occupational exposure
- Residues on surfaces
- Contaminated clothing
- Medical use: scabies, head lice

solución 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

TOXICOKINETICS VARIES FOR DIFFERENT TYPES OF PESTICIDE

Important to consider:

Routes of Absorption

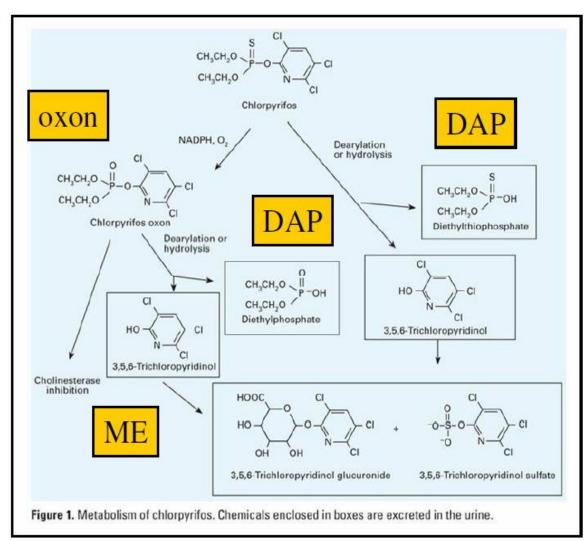
 Dermal, ocular, ingestion, inhalation, injection

Biotransformation

 Into inactive or more active metabolites

Distribution and storage

- Fat soluble pesticides are stored in adipose tissue
- Other


Elimination

- Urinary excretion
- Biliary / faecal excretion
- Excretion in milk

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

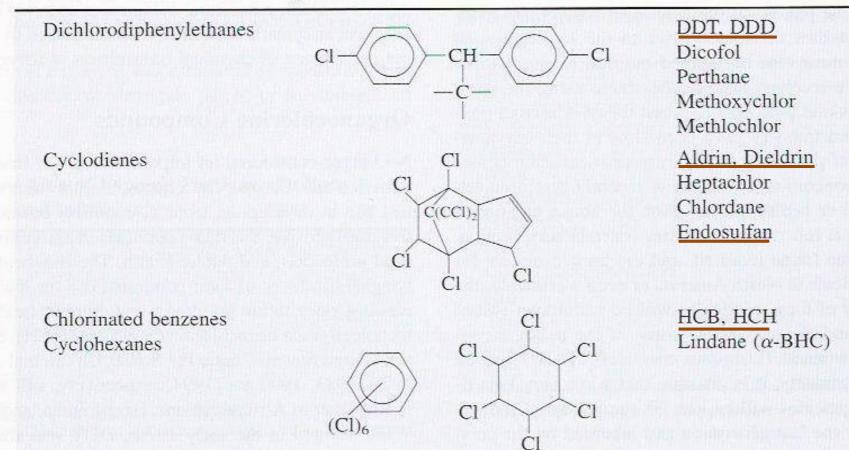
METABOLIC PATHWAYS

- Organophosphates metabolize into:
 - Oxones
 - Specific inactive metabolites (ME)
 - Non-specific metabolites: dialkylphosphates (DAPs)

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

Toxicity of Pesticides

Many different pesticides in use with very different modes of action and levels of toxicity


The WHO Recommended Classification of Pesticides by Hazard

CLASS		LD50 FOR THE RAT (mg/kg BODY WEIGHT)			
		ORAL		DERMAL	
		SOLIDS	LIQUIDS	SOLIDS	LIQUIDS
Ia	Extremely hazardous	≤5	≤20	≤10	≤40
Ib	Highly hazardous	5-50	20-200	10-100	40-400
II	Moderately hazardous	50-500	200-2000	100-1000	400-4000
III	Slightly hazardous	>500	>2000	>1000	>4000
III+	Unlikely to present hazard in normal use	>2000	>3000	—	-

Pesticides

Organochlorine insecticides

Table 22-5 Structural Classification of Organochlorine Insecticides

Pesticides

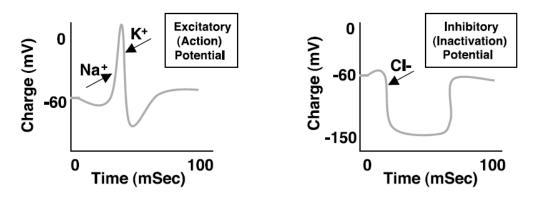
ución 2583 del 26 de febrero de 2014. Ministerio de Educación N

Organochlorine insecticides

- DDT
 - First commercially produced insecticide (1940's)
 - Banned in the US in the 1970's but is still manufactured and exported (1 ton/day)
- Cyclodienes
 - Most toxic (CNS) and persistent pesticides known.
- HCH and Cl-benzene
 - Mixtures of isomers
 - Medicinal use (lice shampoo) (lindane)
 - •T_{1/2} = 7-30 y
 - Bioaccumulates
 - Persistent
 - •Lipophilic

- Non-selective
- •Endocrine disrupter
- •Reproductive toxins
- •Neurotoxic (Lindane)

Observed effects


- DDT
 - Enzyme induction
 - Competes with estradiol for receptor.
- Cyclodienes
 - Reproductive toxicity (reduced fertility, loss of pups, teratogenic)
 - CNS toxicity
- HCH and Cl-benzene
 - CNS toxicity
 - Increased hepatocellular tumors (mice).

Pesticides

Organochlorine insecticides

Mechanisms of action

DDT

- Peripheral sensory neurons
- prolonged negative afterpotential in neurons.
- ↓ K⁺ transport, inactivate Na⁺ channel closure, inhibit Na⁺ /K⁺ and Ca²⁺ /Mg²⁺ ATPases, inhibit calmodulin-transport of Ca²⁺.

Cyclodienes

- CNS localized
- GABA_A receptor/channel antagonists, inhibit Cl⁻-uptake and Na⁺ /K⁺ and Ca²⁺ /Mg²⁺ ATPases,

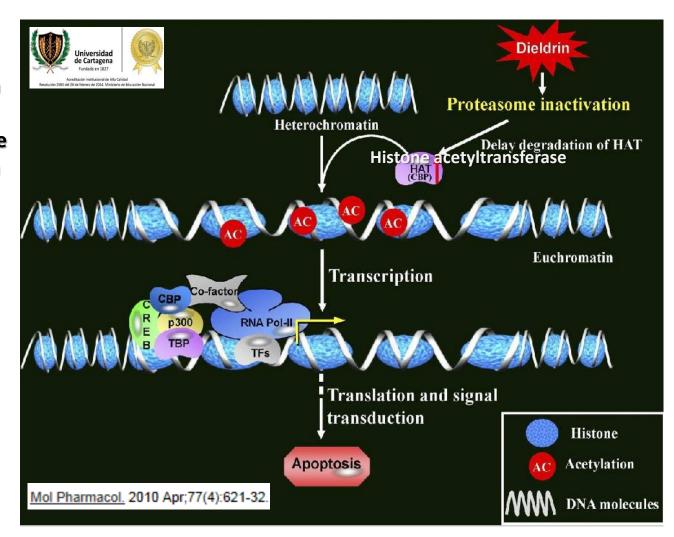
HCH and Cl-benzene

Suggested similar to cyclodienes.

lución 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

Α

DDT-induced Prolonged Repolarization


- DDT affects the permeability of the nerve cell membrane to K+ ions reducing K+ transport across the membrane.
- DDT alters the Na+ channels, they open normally but are closed (inactivated) slowly.
- DDT inhibits neuronal ATPase activity particularly Na/K ATPase and Ca ATPase which play a role in repolarization of the neuron.

All of these factors reduce the rate at which repolarization occurs and increase the sensitivity of the neurons to small stimuli that would not elicit a response in a fully repolarized neuron.

Acreditación Institucional de Alta Calidad n 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

In dopaminergic neuronal cells, dieldrin induced a time-dependent increase in the acetylation of core histones H3 and H4. Histone acetylation occurred within 10 min of exposure indicating acetylation is an early event in dieldrin neurotoxicity. The hyperacetylation was attributed to dieldrininduced proteasomal dysfunction, resulting in accumulation of a key histone acetyltransferase (HAT), cAMP response element-binding protein.

Schematic representation of mechanisms underlying dieldrin-induced hyperacetylation. Exposure to neurotoxic insult dieldrin inhibits proteasome dysfunction, resulting in accumulation of a major HAT CBP. Increased CBP results in greater acetylation of nuclear histones in the chromatin, which ultimately results in alterations of gene expression associated with the neurodegenerative process, including oxidative damage and apoptosis in dopaminergic neurons.

Cholinesterase inhibitors

- Organophosphates (OP) and Carbamates
 - Strong Acute neurotoxicity AChE inhibition (cholinergic effects).
 - Nervous system toxins nerve gas (sarin).

1st OP: TEPP (tetraethylpyrophosphate), followed by parathion 1st carbamic: 1930

WWII chemical warfare

1988 Iraq- against Kurds 1994 Japan 1995 Tokyo subway

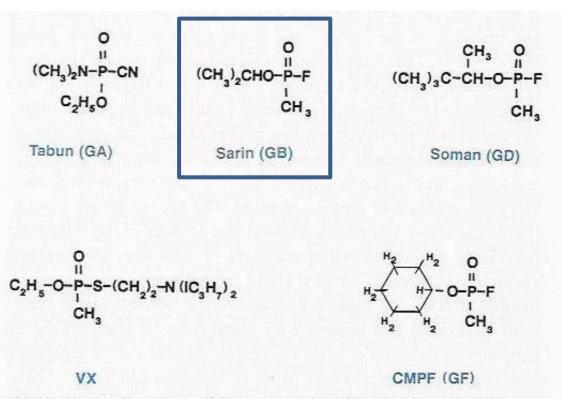
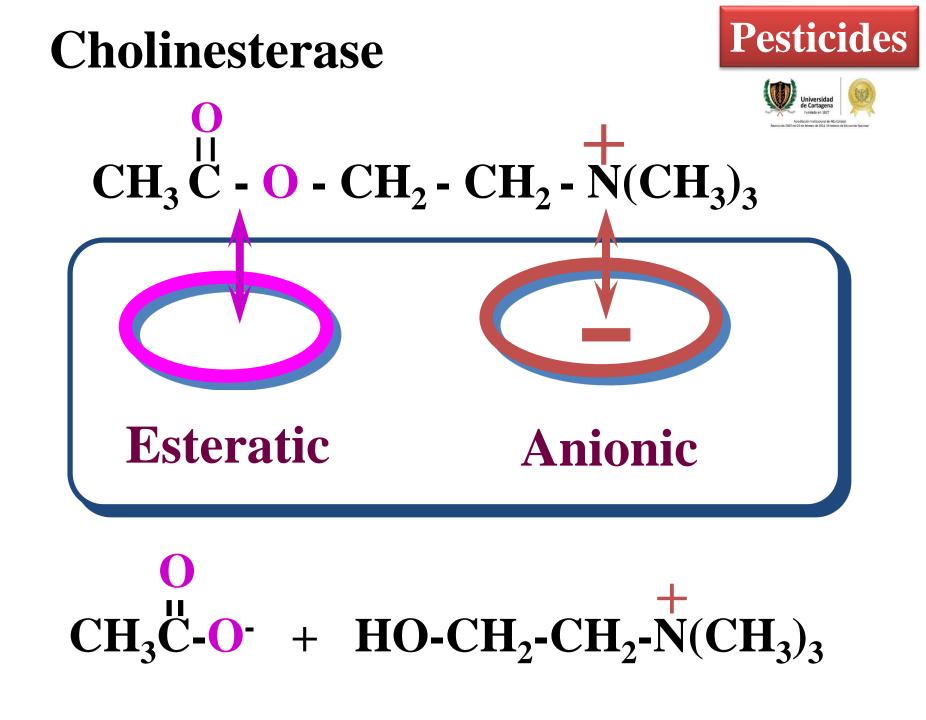
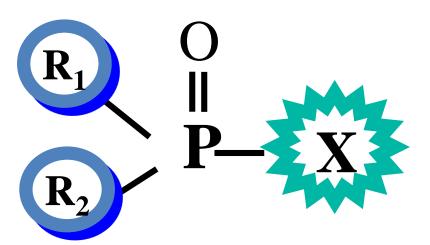
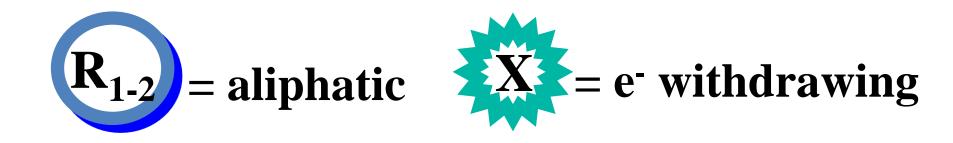
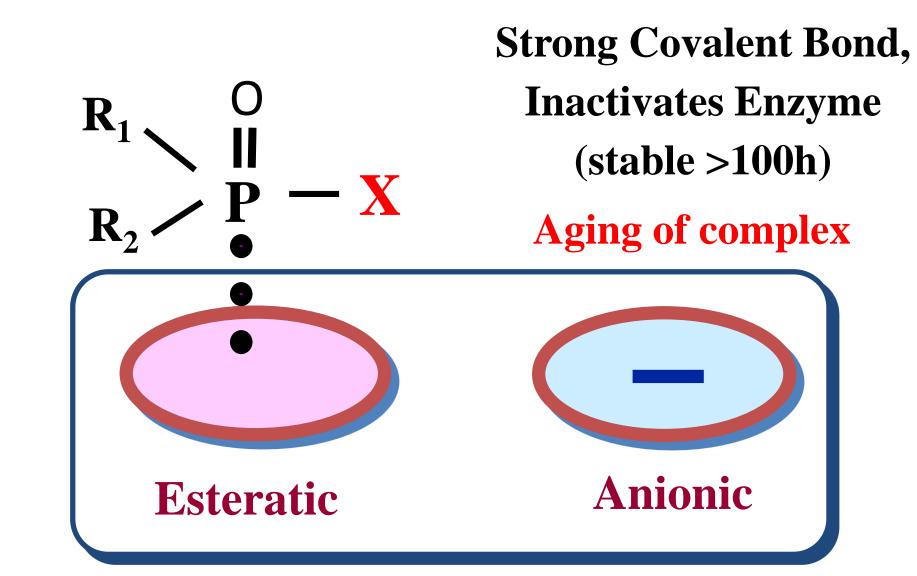



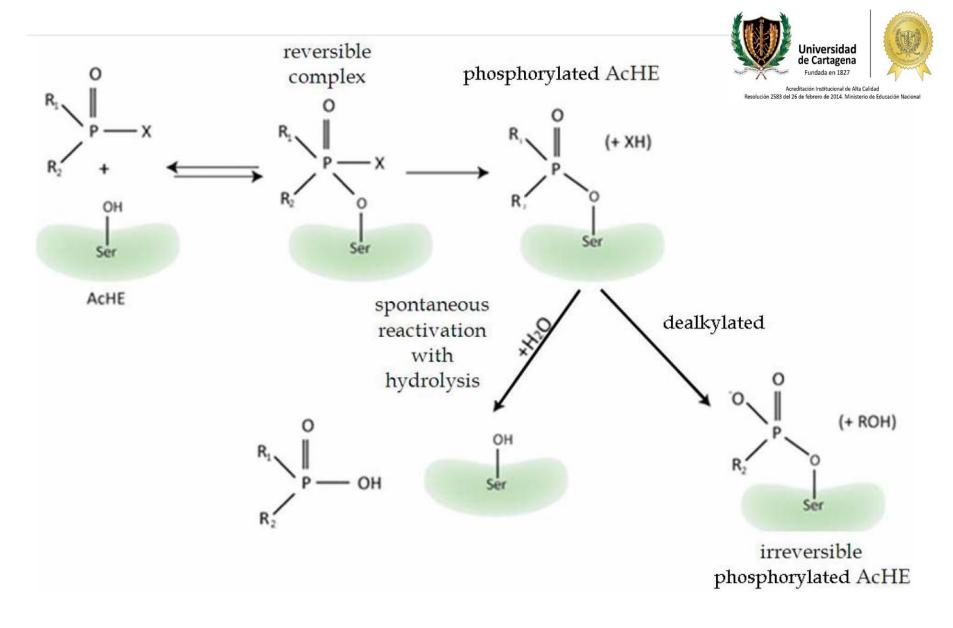
Figure 22-11. Structures of the organophosphorus ester chemical warfare nerve gases, the forerunners of the organophosphorus ester insecticides.




OP-Carbamate insecticides

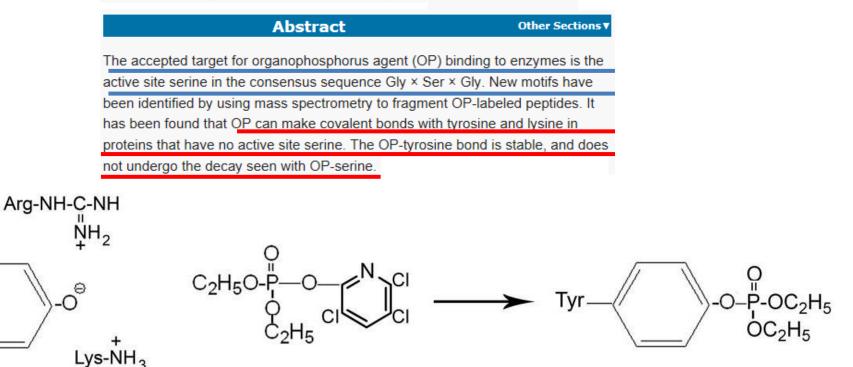
Organophosphates


Parathion Malathion



OP-Carbamate insecticides

Organophosphates


The binding of OP to the active site of AcHE (adapted from Hreljac, 2009)

Chem Biol Interact. 2010 September 6; 187(1-3); 344–348. Published online 2010 March 6. doi: 10.1016/j.cbi.2010.03.002

Review of tyrosine and lysine as new motifs for organophosphate binding to proteins that have no active site serine

Oksana Lockridge and Lawrence M. Schopfer

Tyrosine ion stabilized by Arg and Lys

Chlorpyrifos oxon

Diethoxyphosphorylated tyrosine

Reaction of tyrosinate anion with chlorpyrifos oxon to yield diethoxyphosphorylated tyrosine. The anion of tyrosine is stabilized by interaction with positively charged arginine and lysine side chains. The tyrosine anion reacts with chlorpyrifos oxon to make a covalent bond with diethoxyphosphate while displacing 3,5,6-trichloro-2-pyridinol.

Chem Biol Interact, 2010 September 6; 187(1-3); 344–348, Published online 2010 March 6. doi: 10.1016/j.cbi.2010.03.002

Review of tyrosine and lysine as new motifs for organophosphate binding to proteins that have no active site serine

Oksana Lockridge and Lawrence M. Schopfer

Proteins labeled by OP on tyrosine.

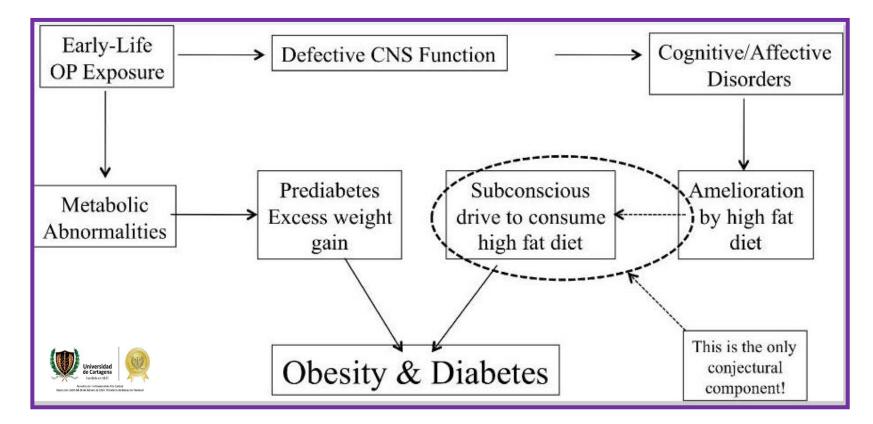
protein	accession number	OP-labeled tyrosine	reference
human albumin	gi 28592	NALLVRY ₄₁₁ TKKVPQ	[25,27]
bovine albumin	gi 30794280	NALIVRY ₄₁₀ TRKVPQ	[45]
guinea pig albumin	gi 33518896	NALAVRY ₄₁₁ TQKAPQ	[29]
mouse albumin	gi 3647327	NAILVRY ₄₁₁ TQKAPQ	present report
mouse albumin	gi 3647327	YEKLGEY ₄₀₁ GFQNAI	present report
bovine tubulin alpha	gi 73586894	EVRTGTY ₈₃ RQLFHP	[36]
bovine tubulin beta	gi 75773583	EATGGKY ₅₉ VPRAVL	[36]
bovine tubulin beta	gi 75773583	SRGSQQY ₂₈₁ RALTVP	[36]
bovine tubulin beta	gi 75773583	SKIREEY159PDRIMN	[36]
mouse tubulin beta	gi 21746161	LERINVY ₅₀ Y ₅₁ NEATGN	[41]
human transferrin	gi 136191	RKPVDEY ₂₅₇ KDCHLA	[46]
human transferrin	gi 136191	RKPVEEY ₅₉₃ ANCHLA	[46]
human kinesin 3C motor domain	gi 160286524	YLVRASY ₁₅₇ LEIYQE	[47]
mouse transferrin	gi 21363012	RKPVDQY257EDCY261LARIPS	[46]
mouse transferrin	gi 21363012	RMDYRLY333LGHNY338VTAIRN	[46]
mouse transferrin	gi 21363012	GIFPKGY448Y448AVAVVK	[46]
mouse transferrin	gi 21363012	QGCAPGY510EKNSTL	[46]
mouse transferrin	gi 21363012	PNNKEEY534NGY537TGAFRC	[46]
mouse ATP synthase	gi 20455479	QKILQDY ₄₃₁ KSLQDI	[47]
papain	gi 129614	NEGALLY ₂₅₆ SIANQP	[13]

Pesticides

The following effects of organophosphorus agents have been demonstrated in animals

The inactivation of the cholinesterases occurs in the blood and in a wide range of nerve, neuromuscular (skeletal, smooth and cardiac) and glandular tissues where these enzymes have a role in cell-to-cell communication and the hydrolysis of xenobiotics. These enzymes have possibly as yet unidentified roles such as cell development and growth.

The inhibition of AChE leads to the accumulation of acetylcholine, the neurotransmitter at all ganglia in the autonomic nervous system and at many synapses in the brain, skeletal neuromuscular junctions, at some postganglionic nerve endings of the sympathetic nervous system and adrenal medulla.


Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Naciona

- 1. Inactivation by phosphorylation of other beta esterases.
- 2. Altering the release of neurotransmitters, e.g. γ -aminobutyric acid (GABA) and glutamate.
- 3. Increasing the number of GABA and dopamine receptors.
- 4. Acting as agonists at M2/M4 muscarinic receptors.
- 5. Inhibition of mitochondrial enzymes, respiration and ATP generation.
- 6. Induction of mast cell degranulation, probably causing the release of histamine or histamine-like compounds.
- 7. Inhibition of nitric oxide.
- 8. Interference with surfactant in the lung.
- 9. Inhibition of phospholipase A_2 .
- 10. Interference with humoral and cellular immunity, e.g. the function of T lymphocytes.

The inactivation of AChE by alkyl phosphorylation of a serine hydroxyl group at the esteratic site of this enzyme leads to accumulation of acetylcholine at the following locations.

- 1. Muscarinic sites, which causes an increase in secretions (bronchorrhoea, salivation, tearing and sweating), bronchoconstriction (tightness in the chest and wheezing), bradycardia, vomiting and an increase in gastrointestinal motility (abdominal tightness, cramps and diarrhoea). Organophosphates cause the diagnostic miosis in the eye, which results in blurring of vision.
- 2. Nicotinic sites (e.g. neuromuscular junctions), which causes muscle fasciculations and a flaccid paralysis in severe exposures.
- 3. Within the central nervous system, which causes headache, insomnia, giddiness, confusion, drowsiness and, in severe exposures, slurred speech, convulsions, coma and respiratory depression.

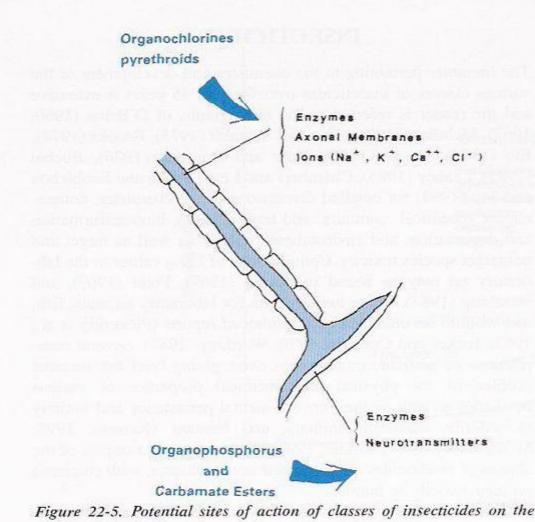
Early-life exposure to OP pesticides contribute to later dietary choice, obesity and diabetes.

OP exposure during a critical developmental window altered the trajectory of hepatic adenylyl cyclase/cyclic AMP signaling, culminating in hyperresponsiveness to gluconeogenic stimuli. Animals developed metabolic dysfunction resembling prediabetes. When the OP-exposed animals consumed a high fat diet in adulthood, metabolic defects were exacerbated and animals gained excess weight compared to unexposed rats on the same diet. At the same time, the high fat diet ameliorated many of the central synaptic defects caused by organophosphate exposure, pointing to nonpharmacologic therapeutic interventions to offset neurodevelopmental abnormalities, as well as toward fostering dietary choices favoring high fat intake. Common insecticides may contribute to the increased worldwide incidence of obesity and diabetes.

Reprod Toxicol. 2011 Apr;31(3):297-301.

Pesticides

OP-Carbamate insecticides


Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

Organophosphates are slower to release from AchE – "also aging effect"

Carbamates are faster: reversible

Phase I metabolic activation .

Multiple metabolic reactions.

axon and terminal portions of the nerve.

Pesticides

Neurobehavioral, muscular and cognitive effects

Delayed Neuropathy (OPIDN) - ginger jake.

Organophosphateinduced delayed neuropathy

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

OP-Carbamate insecticides

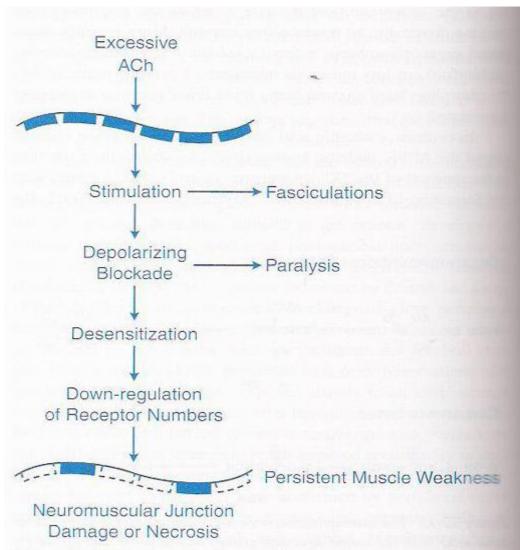


Figure 22-15. A schematic diagram illustrating the impact of excession concentrations of acetylcholine (ACh) on muscarinic and nicotinic acetycholine receptors in order to explain neuromuscular weakness and damage.

Pyrethroids

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

Newer (1980)

Extensive agricultural use. Indoor use. Pet flee control. Household plants.

Modify Na⁺ channel kinetics. Abnormal repetitive discharges.

Type A shorter action than type B

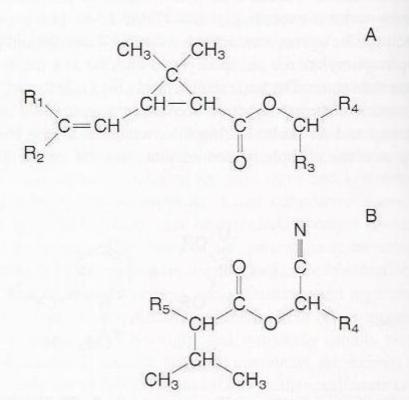
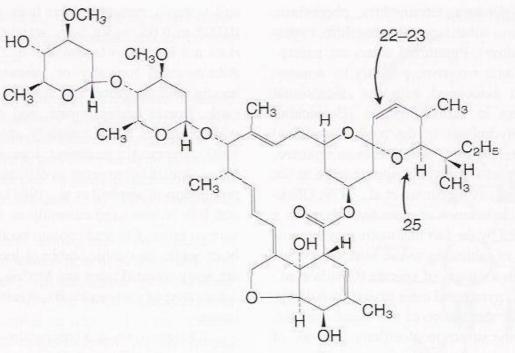


Figure 22-18. The basic structures of the synthetic pyrethroid ester insecticides showing (A) the intact cyclopropane ring in type I esters, with R_1 and R_2 (methyl, bromine, chlorine, etc.), R_3 (hydrogens or cyano) and R_4 (3-phenoxybenzoate, other) substituents; and (B) the "open" structure of type II esters with R_4 (3-phenoxybenzoate, other) and R_5 (substituted phenyl substituents).


Streptomyces avermitilis

Pesticides

Avermectins

Ivermectin binds with high affinity to **glutamate-gated chloride channels** which occur in invertebrate nerve and muscle cells, causing an increase in the permeability of the cell membrane to chloride ions with **hyperpolarization** of the nerve or muscle cell.

Hyperpolarization results in paralsysis and death of the parasite either directly or by causing the worms to starve.

Common Name	Structural Positions			
	22-23	25		
Avermectin Bla	As above	As above		
Avermectin Blb Abamectin	As above	$-CH(CH_3)_2$		
Ivermectin	-CH2-CH2-	80% As above 20% — CH(CH ₃) ₂		

Figure 22-20. A structural representation of the macrocyclic lactone avermectin (B1a), abamectin (B1b), and the semisynthetic insecticide ivermectin showing the structural differences at positions 22 to 23 and 25 of the ring.

Herbicides

Phenoxyherbicides

- Introduced in 1946
- 2,4-Dichloro- and 2,4,5-Trichloro phenoxy acetic acids.
- Defoliants (Vietnam war) Forestry.
- Nerve toxicity, peripheral neuropathy.
- Controversy about NHL and HL.
- Contaminants may be responsible for toxicity.

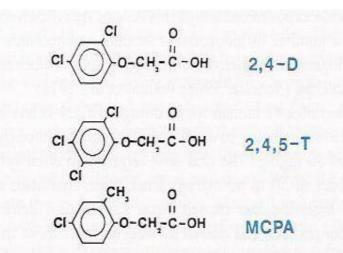
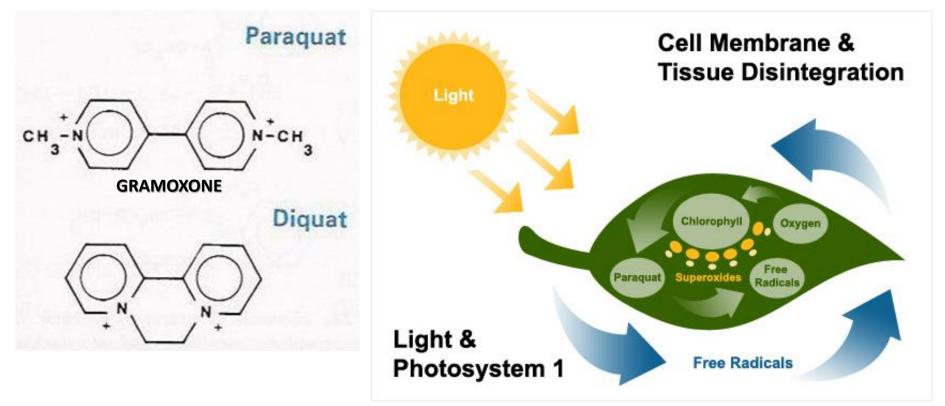



Figure 22-22. The molecular structure of the three most common chlorophenoxyacetic acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and 4-chloro-o-toloxyacetic acid (MCPA). Ester and amine salt derivatives are also marketed.

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

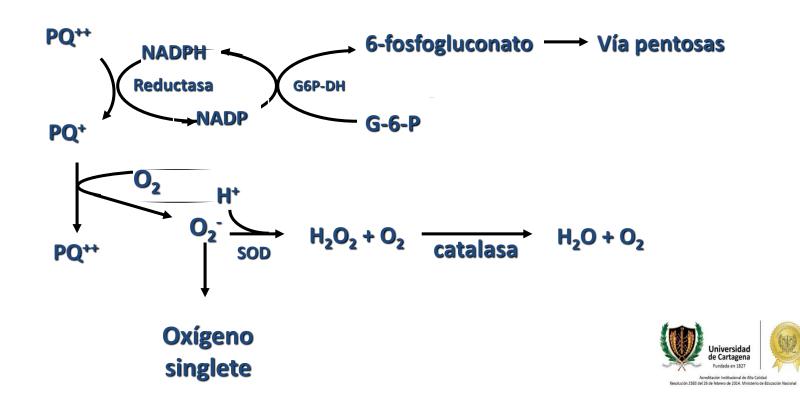
Herbicides Dipyridyl derivatives

"Startling human toxicity" Banned in many countries but still in use in 130 others Lung is the most susceptible target organ Highly polar- poor GI absorption (5-10%)

Pesticides

LD50=22-262 mg/kg

LD50=100-400 mg/kg



Herbicides Dipyridyl derivatives

MECANISMO DE ACCIÓN

Generación de Radicales Superóxido:

Herbicides

Phosphomonomethyl aminoacids

- Non-selective systemic herbicides.
- Free acids or salts ocular and mucus membrane irritants.
- Class E carcinogens (EPA)
- Solvent may be the toxic compound (POEA)

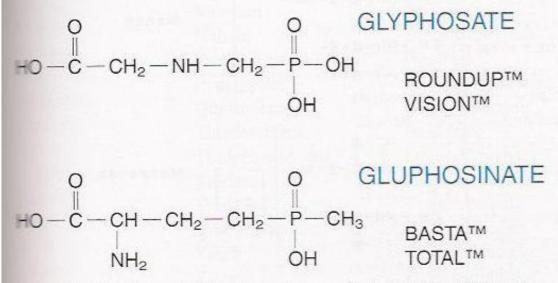


Figure 22-25. The chemical structures of glyphosate (N-phosphomomethyl glycine) and glufosinate (N-phosphonomethyl homoalanine).

Fungicides

- Lipophilic, accumulate
- 90% are carcinogenic in animal models.
- Contaminants are dioxins and furans.
- Hexachlorobenzene (banned)
- Pentachlorophenol (banned).
- Phthalimides. -
- Dithiocarbamates

TBZ inhibits mitochondrial, helminth-specific enzyme, fumarate reductase

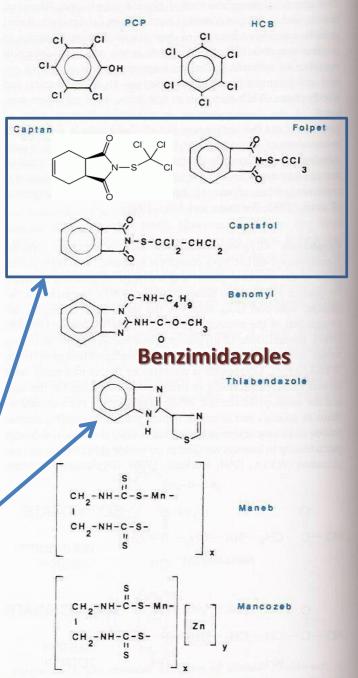


Figure 22-26. Chemical structures of fungicides representative of various chemical classifications.

Pesticides

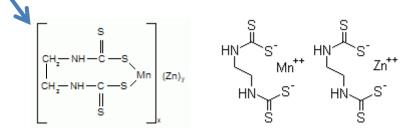
Fungicides

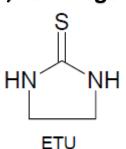
Structures of the Dithiocarbamates in the Candidate Group

Chemical	Structure	CAS No.	
EBDC's ¹			
Mancozeb	Mn ²⁺ / Zn ²⁺ (Mn:Zn, 9:1)	8018-01-7	
Maneb		12427-38-2	
DMDTC's ¹			
Na-Dimethyl- dithiocarbamate	$\begin{bmatrix} H_3C \\ N-C-S \\ H_3C \end{bmatrix} Na^*$	128-04-1	
Ziram	$\begin{bmatrix} H_3C \\ H_3C \\ S \end{bmatrix}_2^{2^+}$	137-30-4	
Ferbam	$\begin{bmatrix} H_{3}C \\ H_{3}C \\ H_{3}C \end{bmatrix}_{3}^{3+}$	14484-64-1	
Thiram	H_3C CH_3 H_3C H_3C H_3C H_3C H_3C H_3C H_3	137-26-8	

Acreditación Institucional de Alta Calidad del 26 de febrero de 2014. Ministerio de Edu

EBDC's = Ethylene-(bis)-dthiocarbamates DMDTC's = Dimethyldithiocarbamates.




Dithiocarbamates.

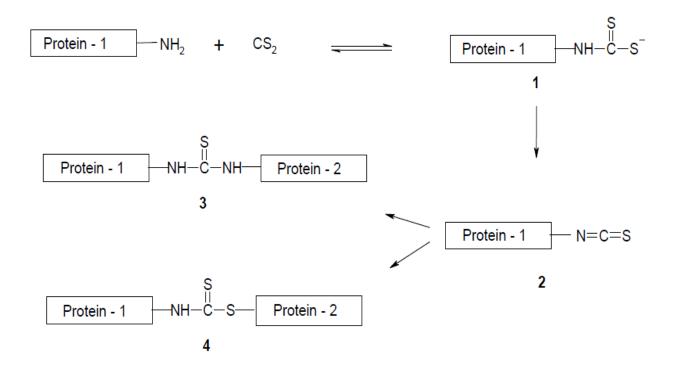
Used to create an animal model of Parkinson's disease

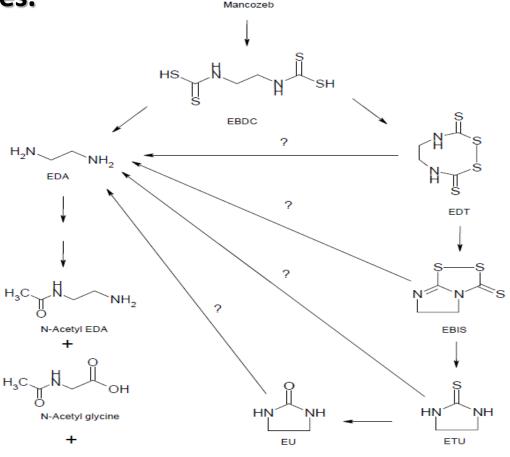
- Ferbam, ziram, maneb, mancozeb (metal-based names)
- Some reported as teratogenic.

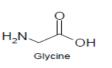
- Degradation to ethylene thiourea (ETU): a known mutagen, carcinogen, teratogen and antithyroid compound.
- Some neurotoxicity at high doses.
- May cross into CNS if bound to divalent metals.

Fungicides

Dithiocarbamates.




Figure 3. Proposed reaction sequence in CS_2 mediated cross-linking of proteins. Lysyl amino groups of proteins (e.g. protein 1) react with CS_2 to yield the dithiocarbamate 1, part of which is converted yo isothiocyanate 2. Conceptually, nucleophilic attack by amino or thiol groups in another protein (e.g. protein 2) may take place yielding the thiourea 3 or the N,S-dialkyl dithiocarbamate ester 4.



Fungicides

Dithiocarbamates.

The weight-of-evidence supports grouping of **Mancozeb**, **Maneb**, **and Metiram**, by a common mechanism of toxicity for thyroid effects. Thyroid toxicity induced by the ethylenebisdithiocarbamates has been attibuted to the metabolism of these chemicals to ETU.

Biotransformation of Mancozeb. Adapted from Accession Nos. 262834 and 262835. EBDC: Ethylenebisdithiocarbamic acid; EDA: Ethylenediamine; ETU: Ethylenethiourea; EU: Ethyleneurea. Conversion of Mancozeb to EBDC and then to EDA or EDT are known chemical, nonenzymatic conversions. For reactions with a "?", it is not known to what extent do these reactions take place.

Summary of effects of treatment of rats or mice with dithiocarbamate

Chemical	Neuropathology	Thyroid	CNS - developmental	Cholinesterase inhibition
mancozeb	+	+	+	not measured
maneb	+	+	+	-
metiram	+	-	no study	not measured
Na-dimethyldithio- carbamate	-	-	-	-
ziram	+	+	-	+
thiram	+	<u>+</u>	+	not measured
ferbam	-	+	+	no study
metam sodium	+	-	-	+

Pesticides

Mancozeb

The widely used fungicide mancozeb has been shown to cause **hypothyroxinemia** and other adverse effects on the thyroid hormone system in adult experimental animals. In humans, **hypothyroxinemia** early in pregnancy is associated with adverse effects on the developing nervous system and can lead to impaired cognitive function and motor development in children.

Mancozeb exposure did reduce T(4) levels in dams and may therefore still be a potential contributor to thyroid disruption in humans and in result adversely affects the developing brain.

Low thyroid hormone levels (hypothyroxinemia). There is a doseresponse relationship in the lower range of the thyroid hormone distribution with verbal and nonverbal delays in early childhood. This means that the lower the T4 level, the worse the delay.

Thyroid peroxidase or thyroperoxidase (TPO) is an enzyme expressed mainly in the thyroid that liberates iodine for addition onto tyrosine residues on thyroglobulin for the production of thyroxine (T_4) or triiodothyronine (T_3), thyroid hormones.

Mancozeb must be considered a multipotent carcinogenic agent.

Fumigants

- Very volatile inhalation exposure
- Non-selective, highly reactive and cytotoxic.
 - Acrylonitrile
 - Carbon disulfide
 - Carbon tetrachloride
 - Ethylene dibromide (gastric carcinomas, sterility)
 - Ethylene oxide (carcinogen, developmental tox.)
 - Phosphine (PH₃) released from aluminum phosphide (AIP) in moist conditions (grain storage)

ACUTE PESTICIDE-RELATED ILLNESS

- Dermal and ocular irritation (or allergic response)
- Upper and lower respiratory tract irritation
- Allergic responses / asthma (fungicides)
- Gastrointestinal symptoms
- Neurological symptoms
- Specific syndromes
 - Cholinergic crisis (organophosphorus pesticides)
 - Bleeding (warfarin-based rodenticides)
 - Caustic lesions and pulmonary fibrosis (herbicide, paraquat)

Paraquat lesions courtesy of Dr. J Pronczuk

ACUTE POISONING BY "ACCIDENTAL" INGESTION

- Storage of leftover pesticide in a medicine or soft drink bottle
- Confusion with pharmaceutical
- Pesticide container reused for storing drinks or food
- Pesticide container present in the child's environment

Bottles containing pharmaceuticals and the pesticide chlorpyriphos Laborde, CIAT, Montevideo

LOW-LEVEL CHRONIC EXPOSURE

Growing body of epidemiologic and animal data and research studies <u>suggests</u> a link between long-term exposure and:

Abnormal growth and development

Impaired neurobehavioral development / functions

Cancer

Increased susceptibility to infections

PRECONCEPTIONAL PRENATAL EXPOSURE

Pesticide exposure before or during pregnancy has been associated with increased risk of:

- Infertility
- Perinatal death
- Spontaneous abortion
- Premature birth
- Fetal growth retardation
- Congenital malformations
- Early childhood cancer

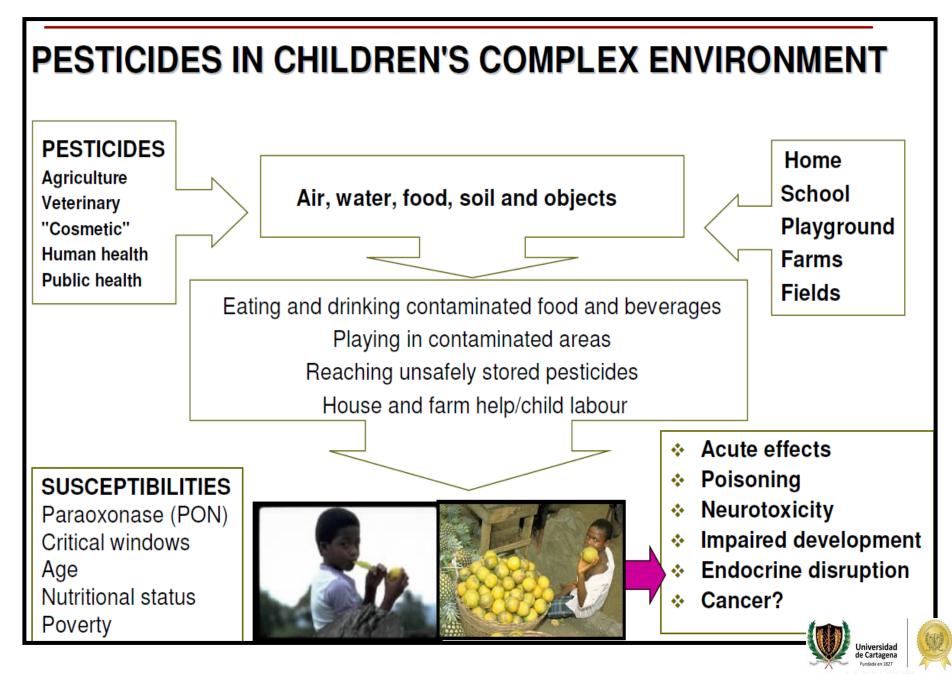
Exposure during brain growth has subtle and permanent effects on:

WHO

- Brain structure and function
- Neuronal and axonal differentiation
- Serotoninergic system
- Synaptogenesis
- Programming of synaptic function

PESTICIDES AND CHILDHOOD CANCER

Some studies have found an association between postnatal pesticide exposure and an increased risk of paediatric cancer


- Brain tumours
- Acute lymphocytic leukaemia
- Non-Hodgkin lymphoma

ENDOCRINE DISRUPTION

- Low doses of <u>certain</u> pesticides may mimic or block hormones or trigger inappropriate hormone activity
- Endocrine disruption may alter development and reproduction and induce birth defects
- Endocrine disruption has been linked to:
 - Infertility
 - Low sperm count
 - Early puberty
 - Hormone-dependent cancers (testicular, breast, prostate)
 - Altered sex ratio

Acreditación Institucional de Alta Calidad Resolución 2583 del 26 de febrero de 2014. Ministerio de Educación Nacional

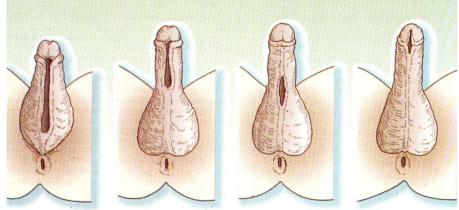


Figura 15-36 Variaciones en el grado de hipospadias.

Hipospadias

OBSOLETE PESTICIDES

Obsolete pesticides are pesticides that can no longer be used for their intended purpose or any other purpose.

They may include:

- Pesticides in liquid, powder or dust, granule, emulsion form.
- Empty and contaminated pesticide containers
- Heavily contaminated soil
- Buried pesticides

Causes of obsolete pesticides:

- Use prohibited for health/environmental reasons
- Product deteriorated as result of improper or prolonged storage
- Product not suitable for intended use and cannot be used for other purposes, nor can it easily be modified to become usable.

Agradecimientos

UNIVERSIDAD DE CARTAGENA

GRACIAS

joliverov@unicartagena.edu.co @joliverov

www.reactivos.com