

AGUA Imprescindible y escasa

De este porcentaje..

Es agua dulce

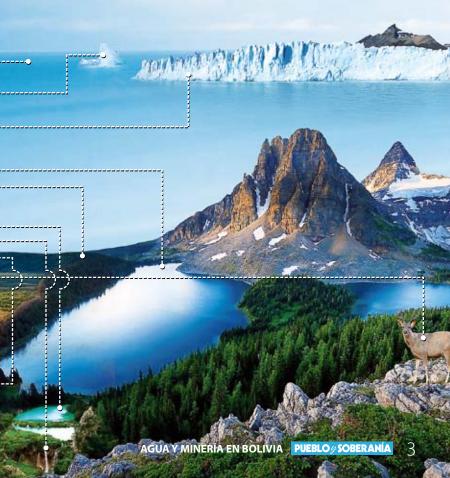
De toda el agua del planeta...

Es agua salada en océanos

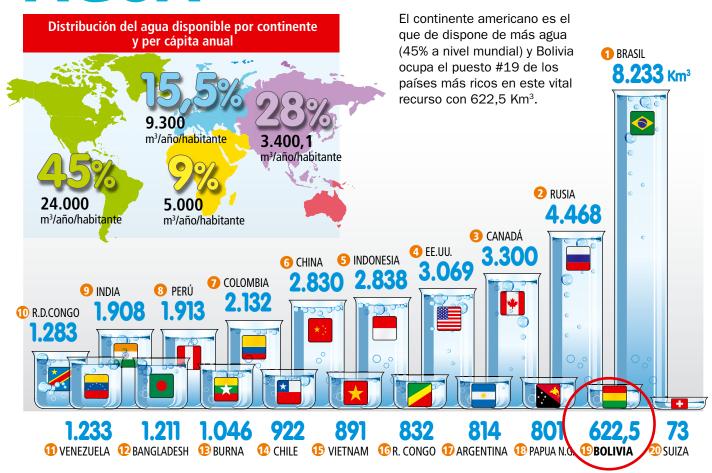
Nuestro planeta tiene la mayor parte de su superficie cubierta por agua (71%); pero tan solo una pequeñísima porción es accesible para consumo (menos del 1%).

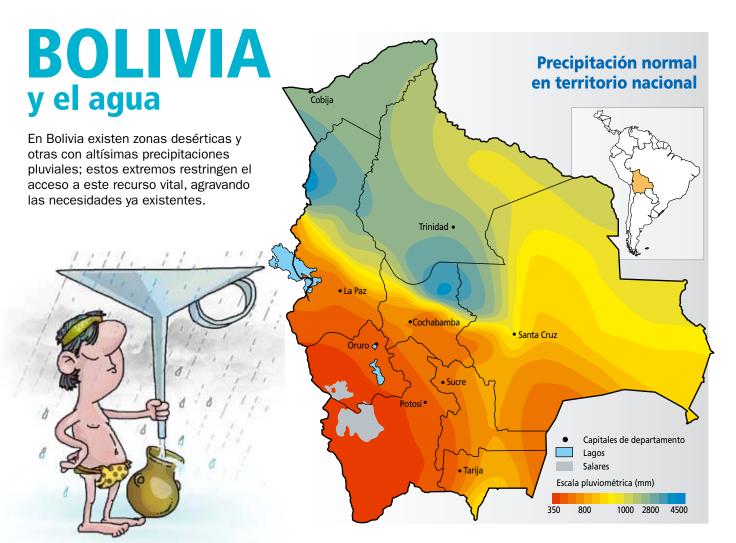
Esto contrasta con el carácter vital del agua: representa entre 50-90% de la masa de los seres vivos (75% en los seres humanos).

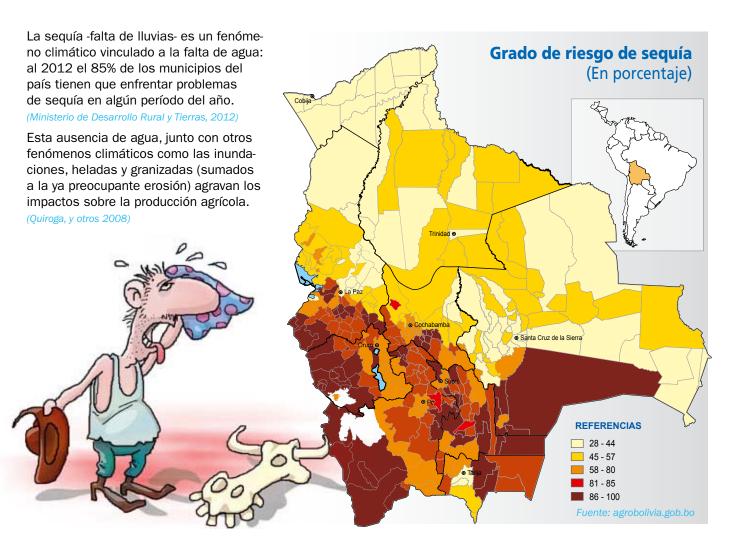
Además es imprescindible para los ecosistemas y necesaria en gran parte de las actividades: agricultura, producción de bienes, etc.

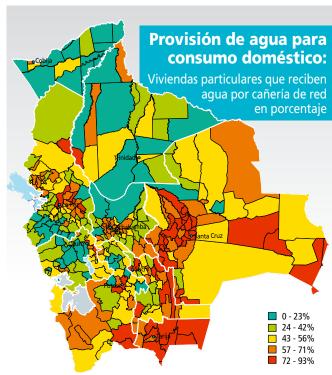


Fuente: Lean, G. y Hinrichsen, D. (1994) citado en (Anaya Garduño y Martinez 2007)

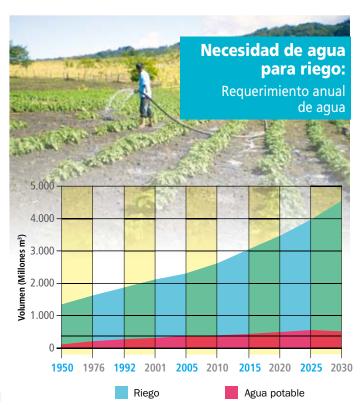

AGUA su distribución en el planeta


Situación del agua	Volumen km³	Porcentaje
Atmósfera	12.900	0,001
Océanos y mares (agua salada)	1.338.000.000	96,50
Casquetes y glaciares polares	24.064.000	1,74
Glaciares continentales y Permafrost	300.000	0,022
Agua subterránea salada	12.870.000	0,94
Lagos de agua salada	85.400	0,006
Humedad del suelo	16.500	0,001
Agua subterránea dulce	10.530.000	0,76
Lagos de agua dulce	91.000	0,007
Ríos	2.120	0,0002
Embalses	11.470	0,0008
Agua biológica	1.120	0,0001
Total agua dulce	35.029.110	2,53
Total agua en la tierra	1.386.000.000	100,00


Agua que se puede utilizar (menos del 1%)



AGUA Su distribución en el planeta



Los datos del censo 2012 (INE, 2013) precisan que casi 2,1 millones de bolivianos no cuentan con servicios de agua y 5,3 millones están sin alcantarillado. Esto significa que 300 mil habitantes reciben agua de carros aguateros; poco más de 1 millón deben aun recurrir a ríos, lagos, lagunas, vertientes, acequias o curiches; 3 millones no tienen baño ni letrina y algo más de 50 mil aún vierten sus aguas residuales a las calles, quebradas o ríos.

El Inventario Nacional de Sistemas de Riego (2012) ha identificado que existen 303.201 Has. bajo riego, habiéndose incrementado en más de 76 mil Has. respecto al 2000. En términos de recursos hídricos se proyecta al 2025 el requerimiento de aproximadamente 4.000 millones de m³.

Un panorama de la MINERÍA en Bolivia

REGALÍAS: \$us 138,02 millones el 2013 **PIB: 5,59%** el 2013 (solo el 4,53% de lo que se exportó) **Breves** ■ INVERSIÓN: \$us 194,8 millones el 2013 datos de la IMPUESTOS: \$us 185,682 millones el 2013 (59,4% inversión pública) Minería en (solo el 6,09% de lo que se exportó) **Bolivia VALOR DE EXPORTACIÓN: \$us 3.049,08** millones al 2013 FUERZA LABORAL: 130.932 trabajadores al 2013 (89,36% corresponde a cooperativas) Fuente: Elaboración propia en base a datos del Ministerio de MInería y Metalurgia, 2014 La minería es la actividad extractiva más importante de Bolivia después de los hidrocarburos y por supuesto requiere de **AGUA**. PERO ¿La minería usa aqua como las otras actividades? ¿Cuánta agua usa la minería en relación con el consumo doméstico o agrícola? ¿Los desechos mineros y sus aguas residuales son comparables a las de un centro poblado? ¿Oué impactos tiene la minería en Bolivia sobre la calidad del agua? ¿Sobre la cantidad del agua?

¿Sobre la sostenibilidad de la fuente

del agua y el ecosistema?

Los riesgos de la minería

respecto al agua

Los riesgos de la minería respecto al agua los clasificamos en dos grandes grupos:

Uso del agua:

- · La minería requiere grandes volúmenes de agua generando RIESGO DE **SOBREEXPLOTAR** lagos, lagunas, vertientes, ríos o aguas subterráneas.
- · Por la gran cantidad de agua que usa, la minería genera RIESGO DE COMPETIR con otros usuarios para consumo doméstico, riego, bebederos de animales u otros usos.

Contaminación del agua:

- El alto poder contaminante de los químicos que usa y sustancias que genera y desecha la minería afecta la CALIDAD DEL AGUA:
 - a lo largo de la microcuenca y macrocuenca AMPLIANDO EL ALCANCE GEOGRÁFICO **DE LOS IMPACTOS:**
 - por prolongados periodos en el tiempo AMPLIANDO EL ALCANCE TEMPORAL DE LOS IMPACTOS:
 - v con efectos contaminantes que se AMPLIAN Y ACUMULAN en el aire, suelo y seres vivos (plantas, animales y seres humanos).

En Bolivia 2011, las minas

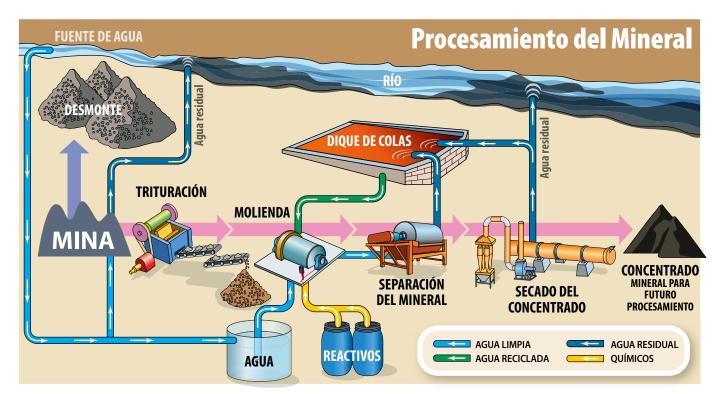
Los usos del agua en la minería

¿En qué consume agua la minería?

Como para casi todas las actividades, el agua es vital para la minería. No solo para los trabajadores, sino porque la minería sin agua no puede realizarse. Pero ¿en qué consume agua la minería?

AGUA PARA CONSUMO DOMÉSTICO. Los trabajadores en los campamentos o centros poblados requieren agua para beber, cocinar, lavar, baños, etc. Este consumo es poco significativo en volumen frente al total en una operación minera; pero no por eso deja de ser importante pues está vinculado a la salud de los trabaiadores mineros.

AGUA PARA LA EXPLORACIÓN. Se usa agua para la construcción de infraestructura y principalmente perforaciones. El volumen de agua también es mínimo.


AGUA PARA LA EXPLOTACIÓN. En la minería subterránea se emplea el agua para la perforación con taladros, sin embargo suele ser más importante extraer las "aguas mineras" generadas en los socavones o producto de precipitaciones.

AGUA PARA TRANSPORTE. En la minería a cielo abierto, en algunos grandes emprendimientos mineros existen ductos que, junto con agua, transportan mineral denominados MINERODUC-TOS (en cuyo caso este uso llega a representar hasta el 6% del total consumido). Sin embargo lo más común es que en minería a cielo abierto el uso principal de agua vinculado al transporte es en el riego de caminos para reducir el polvo en suspensión que se genera con el paso constante de camiones-volquetas de alto tonelaje. Este consumo llega hasta un 15% del total.

AGUA PARA EL PROCESAMIENTO DE MINERALES.

Representa el mayor consumo de agua con respecto al total del volumen. Los procesos de extracción se inician con el vertido de grandes volúmenes de agua y reactivos químicos al mineral

molido. Si bien concluida la obtención del metal, una porción de agua se puede recuperar y reutilizar, se desecha gran parte del agua con elevadas concentraciones de sustancias químicas.

TRANSPORTE DE CONCENTRADOS Y DESECHOS. Parte del agua descartada forma parte de los desechos que en el mejor de los casos son depositados en diques; en esta etapa parte del agua se evapora, retiene o infiltra. Lamentablemente es más común la práctica de verterlos directamente a ríos.

¿Cuánta agua consume la minería en Bolivia?

Cuando se trata de estimar el consumo de agua de los distintos sectores, es importante concentrarse en el espacio de la cuenca. En nuestro país, la minería es la GRAN CONSUMIDORA de agua en las cuencas donde se encuentra ubicada.

Algunos casos críticos del alto consumo de agua de la minería en Bolivia se presentan en la siguiente comparación.

Consumo de agua de grandes operaciones mineras en Oruro, Bolivia

Operación	Cantidad de agua utilizada [L/día]	Equivalencia de consumo en agua potable con la ciudad de Oruro*	Fuente	Referencia
KORI CHACA	2.468.493	9%	Agua potable Río Desaguadero	Estudio de Evaluación de Impacto Ambiental proyecto Kori Chaca (2002)
KORI KOLLO	22.040.000	77%	Agua subterránea Río Desaguadero	Manifiesto Ambiental Mina Kori Kollo. 1997
Llenado Tajo KORI KOLLO	6.262.231	22%	Río Desaguadero	Plan de cierre y rehabilitación operación Kori Kollo. 2002 Plan de manejo de aguas para el lago del tajo Kori Kollo. 2003
SINCHI WAYRA POOPÓ	952.054	3%	Provisión local de pozos	Estudio de Evaluación de Impacto Ambiental Analítico Integral. 2005
SINCHI WAYRA BOLIVAR	4.147.200	15 %	Agua subterránea	Estudio de Evaluación de Impacto Ambiental. 2001
HUANUNI	28.320.000	99%	Río venta y media, pata Huanuni e interior mina	Auditoría ambiental a mina Huanuni. 1995
CÍA. MINERA TIWANACU S.A.	777.860	3%	Río Poopó	Auditoría Ambiental de Línea Base. 1999
MINA SAN CRISTÓBAL	43.828.000	153%	Campo de pozos de cuenca Jaukihua	Informe descriptivo de los recursos hídricos Mina San Cristóbal. 2010

^{*} La producción de agua potable de Servicio Local de Acueductos y Alcantarillado-Oruro(Sela) el 2011 alcanzó 28.562.216,44 L/día (La Patria 2012); el consumo, por perdidas, con seguridad fue menor. Oruro tiene una población estimada de 235.700 habitantes (2011).

Fuente: (Layme 2012) y (Leman Consulting Group S.R.L. 2010) con complementaciones propias.

Los impactos del consumo de agua

Además del alto consumo del agua de las minas, es importante considerar los impactos que la minería tiene en la CANTIDAD DE AGUA de LAS FUENTES DE AGUA: la minería subterránea o a cielo abierto bombea hacia afuera el agua subterránea, afectando la napa freática, disminuyendo o haciendo desaparecer pozos, vertientes, ríos, manantiales u otras fuentes de agua.

El consumo estimado de agua de la empresa minera San Cristóbal (MSC), una de las más grandes minas de plata a nivel mundial, es de 43 millones de litros por día (1,5 veces la ciudad de Oruro) de 20 pozos profundos (hasta 290 m) en la microcuenca Jaukihua. Estas aguas subterráneas aún se debate si son aguas fósiles profundas (sin recargas importantes, acumuladas en miles de años y por tanto no renovables). Se estima que en 20 años de duración del proyecto se habrán extraído 292.000 millones de litros.

Los impactos del alto consumo de aguas ecológicamente frágiles son la principal preocupación. Las aguas subterráneas reciben solo 175 mm de lluvia anualmente (240 mm/año en Jaukihua según MSC), pero la altura, la luz v el viento hacen que la evaporación de agua sea mayor: 1.500mm/año (2.500 mm/año en Jaukihua según MSC); por lo que el agua subterránea acumulada hace más de 10 mil años es la que permite existan vertientes, bofedales v humedad en el suelo para la existencia de pastos.

Sobreexplotar estas aguas implica que el nivel de la napa freática baie considerablemente y que, si es el caso, se requerirían muchos años para que las aguas subterráneas se puedan recuperar (se estiman 60 años); tiempo en el que los ecosistemas que dependen de este recurso desaparecerán (Moran 2009 v Leman Consulting Group S.R.L. 2010). Si bien MSC argumenta que los impactos de semejante consumo de agua se limitarán tan solo a la microcuenca de 62 Km², existen sólidos argumentos para prever que los impactos se ampliarán a la región: el río Grande de Lipez, las fuentes de agua de las comunidades colindantes (San Cristóbal. Culpina K, Río Grande y Vila Vila) y por tanto sus actividades agropecuarias, así como el ecosistema local del que forma parte esta zona del río Grande de Lipez.

El alto nivel de consumo del agua afecta también a los otros usuarios de estas fuentes de agua:

- Uso doméstico del agua. El agua de las comunidades San Cristóbal, Culpina K y Vila Vila son insuficientes, habiendo realizado MSC obras para aumentar el caudal del agua para consumo de estas comunidades.
- Uso agropecuario y bofedales. No existe información precisa sobre qué bofedales existen ni cuáles son sus características pero los impactos de la explotación con seguridad amenazarán su existencia y con ella la de los animales que dependen de éstos.

Contaminación del Agua por la Minería en Bolivia

¿Cómo la minería contamina o afecta el agua?

La actividad minera genera aguas ácidas que resultan del contacto de ciertos minerales con el agua y oxigeno, denominadas "agua de minas", en términos más precisos Drenaie Ácido de Minas (DAM) y Drenaje Ácido de Roca (DAR). Estas "aguas de minas" resultan de procesos químicos e hidrobiológicos que pueden durar cientos de años.

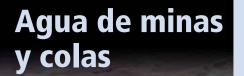
DRENAJE DE AGUAS DE MINAS SUBTERRÁNEAS

La minería subterránea, al perforar socavones en el subsuelo genera espacios por los cuales fluyen aguas subterráneas, que para poder extraer y trabajar en las minas, deben bombear al exterior.

DRENAJE DE TRABAJO EN TAJOS

La minería a cielo abierto trabaia a la intemperie perforando "tajos abiertos" de gran profundidad (hasta 400 m). Estos tajos pueden afectar aguas subterráneas y las Iluvias que "inundan" el tajo y "lavan" sus paredes también generan agua de minas.

DRENAJE DE PROCESOS DE LIXIVIACIÓN


Uno de los drenajes más peligrosos -por la concentración de sustancias nocivas- es el resultante de los bloques acumulados para lixiviación y el agua residual que de esta resulta y no se reusa.

EFLUENTES DE DESMONTES (ACUMULACIÓN DE **DESECHOS**)

Los desechos de material (o ganga) son acumulados en espacios que son "lavados" por la lluvia.

Las "COLAS" o residuos del procesamiento del mineral que contienen agua y desechos, son también fuente de contaminación. El agua requerida para el tratamiento del mineral al ser desechada contiene químicos y minerales en altas concentraciones, muchos de ellos tóxicos. Estas colas son almacenadas en diques; donde el agua se evapora, retiene o infiltra: lamentablemente es mas común que sean vertidas directamente a ríos.

Estas "aguas de minas" y "colas" al entrar en contacto con fuentes de agua...

- Generan acidez y turbidez.
- Transportan metales pesados.
- Provocan la pérdida de cualidades físicas, biológicas y químicas del agua.

Características tóxicas para los ecosistemas y los seres vivos

Al considerar que el agua se convierte en el principal medio de transporte por el que estas sustancias tóxicas se transfieren a los ecosistemas aumenta la necesidad de evitar su contaminación.

Casos críticos de contaminación hídrica en Bolivia

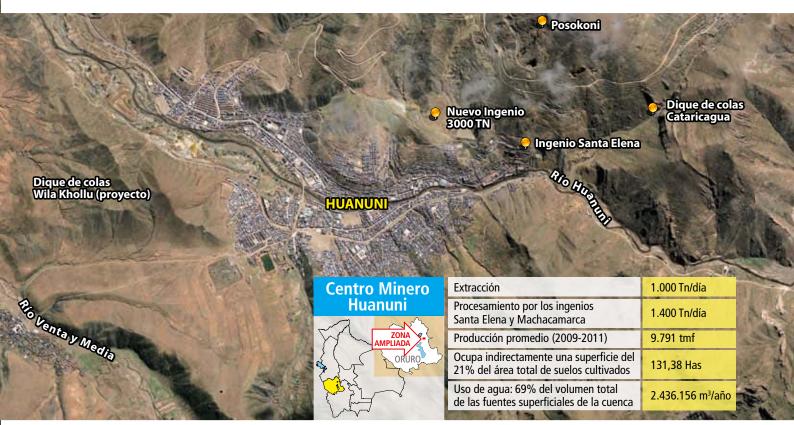
El lago **POOPÓ**

La cuenca del lago Poopó está compuesta por 22 micro cuencas de 23 a 2.577 Km² con dos lagos poco profundos: Poopó (profundidad máxima de 3,5 m) y Uru-Uru (profundidad máxima de 1 m). Estos cuerpos de agua son reguladores de temperatura de esta ecoregión, fuentes de biodiversidad y

muy sensibles a cambios climatológicos y contaminación hídrica. En el área de la cuenca viven aproximadamente 130.000 habitantes.

El lago Poopó es una de las fuentes de agua más contaminadas por metales pesados de varias minas de Oruro: Vinto, Kori Kollo, San Jose, Sinchi Wayra, Huanuni, etc. Es un lago altamente salino con alto nivel de concentración de sustancias tóxicas: recibe diariamente 39 Kg. de cadmio, 3.969 Kg. de zinc. 821 Kg. de arsénico y 73 Kg. de plomo.

Contribución de metales pesados


por cada río tributario			Plomo	Zinc	Cadmio
Cantidad de metales pesados vertidos diariamente en el lago Poopó por sus tributarios (Kg/día)			73,052	3.969,49	39,95
Ríos	Principales minas y contaminantes				
RÍO DESAGUADERO (Puente Karasilla)	• Fundición de Vinto, Mina Kori Kollo (Arsenico, Zinc y Cadmio)	70,35%	64,43%	4,27%	2,18%
RÍO DESAGUADERO (Puente Aroma)		11,21%	17,97%	1,09%	1,9%
RÍO ANTEQUERA	Mina San Jose (Plomo)Bolivar - Sinchi Wayra (Cadmio y Zinc)	0,01%	0,66%	56,93%	32,92%
RÍO HUANUNI	 Minas Totoral y Avicaya Mina e ingenio Huanuni (Cadmio y Zinc)	0,02%	2,23%	34,34%	61,23%
RÍO TAJARITA		17,21%	13,17%	2,76%	1,25%

Fuente: Elaboración propia en base a (Navarro Torres, Zamora Echenique y Singh 2012)

El caso de HUANUNI: desastre ambiental

El río Huanuni vierte diariamente al Lago Poopó entre 1.363 Kg de Zinc, 124 gr de Arsénico, 1,63 Kg de Plomo y 24,46 Kg de Cadmio. Estos niveles de contaminación y los impactos sobre la vida hacen de éste prácticamente un "río muerto". La mina Huanuni es la causa central de esta contaminación; es la más importante mina de estaño de Bolivia, también se explota Plata, Zinc y Plomo.

Los principales focos generadores de contaminación son 1.531.500 Ton, de desmontes distribuidos en varios puntos: Desmonte en la cercanía de la cima del Cerro Posokoni, parte alta Río Catari Cahua, Desmonte en sectores Harrison y Patiño, Desmonte en sector Talismán, Bocaminas Esperanza y María

La producción agropecuaria que usa las aguas del río Huanuni tiene niveles de Cadmio que sobrepasan los estándares permisibles de la OMS

Cultivo	HUANUNI (mg/kg)	Veces que supera el límite establecido por la FAO OMS (0,1 mg/kg)	
Papa	0,352	3,5 veces	
Quinua	0,860	8,6 veces	
Haba	0,198	2,0 veces	
Trigo	0,300	3,0 veces	

Fuente: (COMIBOL & Swedixh Geological AB 1995)

Francisca, Planta de concentración Santa Elena, Colas en el sector Porvenir y en el lecho del Río Huanuni. (DIMA COMIBOL 2012)

La producción agropecuaria que usa las aguas del río Huanuni tiene niveles de cadmio que sobrepasan los estándares permisibles de la Organización Mundial de la Salud. La contaminación ha afectado a plantas nativas que son base fundamental del alimento de ganado.

Estos impactos fueron la razón para que las comunidades afectadas se movilizaran demandando acciones inmediatas. Tras años de movilización, se emite el DS N° 335 el 21 de octubre de 2009 que declara "Situación de Emergencia de carácter Departamental", debido a la inminente afectación a la salud humana y la seguridad alimentaria ocasionada por la prolongada presencia de contaminación y salinización de los suelos del área de influencia de la Sub-Cuenca Huanuni del Departamento de Oruro. Al presente, a pesar del apoyo económico de la Unión Europea, se han ejecutado medidas sin resulta-

dos efectivos: el dique de colas de Cataricagua aún no funciona plenamente, continúa la descarga de contaminantes al Río Huanuni y no se han realizado acciones para mitigar los impactos ambientales en el río, su lecho, el lago Poopó y las comunidades afectadas.

La contaminación ha afectado a plantas nativas que son base fundamental del alimento de ganado:

Pastos en Sora Sora	¿Cuántas veces excede estándares internacionales?		
Paja suave	8 veces en Arsénico	1 vez en Plomo	
Thola	8 veces en Arsénico 2 veces en Plomo	3 veces en Cadmio 1 vez en Cobre	
Totora	8 veces en Arsénico		
Esto resulta en que el consumo estimado de metales de un ganado	G	13 g/mes de Cadmio 8 g/mes de Estaño	

Fuente: (Caichoca Calle 2012) basado en (Montoya Choque, y otros 2011)

Brasil Paraguay Argentina

Dique San Antonio

Río PILCOMAYO: Alcance de los impactos de los ingenios mineros de Potosí

El río Pilcomayo es el principal río de la macrocuenca del Plata, nace en Potosí, atraviesa Chuquisaca y el Chaco tarijeño llegando hasta Paraguay v Argentina, cubre 261,000 Km², Este río es uno de los más afectados por la minería al recibir la contaminación de casi media centena de ingenios mineros v varias operaciones mineras en Potosí.

¿Qué se ha hecho para remediar esta situación?

Las medidas de mitigación se han concentrado solo en una parte del problema, los desechos de los ingenios mineros en Potosí.

• Los diques de colas Laguna Pampa I y II (2004), recibieron 40.474 Ton/mes, con un

nivel de tratamiento insuficiente (aguas con alto Ph superando niveles de Plomo y Cadmio). Esta alta descarga ocasionó que en 2007 se llene en su totalidad, cumpliendo su vida útil; 1.050.000 m³ de capacidad y 9,1 Ha. de superficie. (Verzat 2006)

• El dique San Antonio, si bien ha contribuido en algún grado a disminuir el nivel de contaminación en el Pilcomavo, tampoco tiene un tratamiento adecuado (detiene solo relaves, no tiene planta de tratamiento) y por la alta descarga se estima que reducirá su vida útil planificada de 16 años a solo 7.

El derrame de ducto de colas del megaproyecto San Bartolomé de Manquiri (2009) y la ruptura del dique de colas de Porco de COMSUR (1996). son pruebas que estas medidas no son una solución sostenible. (Ribera Arismendi 2010)

A pesar de estas medidas los indicadores de calidad de agua no mejoran. Los elevados precios de los minerales y la reactivación de varias minas han elevado las concentraciones de plomo y cadmio: para el año 2006, superan respectivamente en 3 y 1,3 veces los parámetros de la OMS. (Verzat 2006)

Agudización del problema

Desde el año 1573 existe minería en Potosí pero no es hasta 1985, que con la caída de los precios del estaño la minería diversifica su producción (extrayendo Plomo, Zinc, Plata) y para obtener mayores rendimientos introduce tecnologías de procesamiento con uso de químicos

(xantatos, sulfatos de cobre, sulfatos de zinc, cal, espumantes y cianuro de potasio). Para 1998 existían 42 plantas de procesamiento en Río Ribera con una capacidad de tratamiento de 1.500 Ton/día (530.000 Ton/año), desechando anualmente 360.000 toneladas de relaves mineros con alto contenido de plomo, arsénico y otros metales en los ríos Ribera, Huaynamayu y Korimayu (Medina Hoyos y Smolders 2005). Un estudio de JICA y la prefectura de Potosí estimó que en 1999 se vertían diariamente en el río 300 kg. de Arsénico, 100 kg. de Cadmio, 2 ton. de Plomo, 20-30 ton. de Zinc y 4 ton. de Estaño (Mitsui Mineral Developplent Engineering Co. Ltd. UNICO International Co., Ltd. 1999).

La política minera: El agua "PRIMERO" para la minería

Las normas y políticas desde antes que exista Bolivia entregaron el agua a la minería nacional o transnacional, esta política se mantiene y se profundiza con la Ley 535 de Minería y Metalurgia recientemente aprobada:

Las leyes han entregado el agua a la minería de forma gratuita y sin ningún control

En toda la historia boliviana la oligarquía minera ha sido quien ha diseñado las normas y políticas, por ello mismo ha puesto el agua a disposición de la minería.

- · La ley de Aguas elaborada en 1879 elevada a rango de ley en 1906, entrega la propiedad del agua en el espacio de la mina al minero (art, 35), Hasta el momento no se ha aprobado una nueva Ley de Aguas que cambie esta situación.
- · Desde ese entonces TODOS los códigos mineros entregan el libre uso de aguas en el área de sus concesiones a los mineros. Desde la Lev Minera de 1880 (art. 25), el Código de Minería de 1925 (art. 114-122). el Decreto Ley de 1965 y elevado a rango de Ley en 1991(art. 85, 87 y 90), hasta el Código Minero de Goni de 1997 (art. 36-38).
- · La Lev 535 de Minería v Metalurgia de 2014 (art. 13.IV) reconoce a todos los mineros derechos pre-constituidos, es decir los adquiridos con todas las normas anteriores.

LA LEY MINERA ACTUAL. EN RELACIÓN AL AGUA, ESTABLECE UNA POLÍTICA MINERA DEL AGUA VIGENTE DESDE HACE MÁS DE CIEN AÑOS Y HEREDADA NO SOLO DEL MODELO NEOLIBERAL SINO DEL PROPIO MODELO COLONIAL

El carácter "estratégico y de interés o necesidad pública" ha sido el permanente pretexto para priorizar el agua para la minería antes que para otros usos; pero...

¿Qué es más estratégico y de necesidad o interés público que el agua para el consumo doméstico, para alimentarse, para producir alimentos, para el medio ambiente?

109

áreas mineras

que cubren una

superficie de

de agua

Las 8.249 69.870 Has áreas mineras fueron entregadas (concesiones y contratos) como concesiones vigentes hasta el 2014 tienen ¡derecho a usar libremente el aqua!

> ¿Dónde queda el reconocimiento del derecho humano al agua? ¿el reconocimiento del derecho al agua para la vida?

Gran parte del agua ya está bajo el control de la minería

1.848 RÍOS MENORES y 39 LAGOS/LAGUNAS están superpuestos con áreas mineras (Datos 2014)

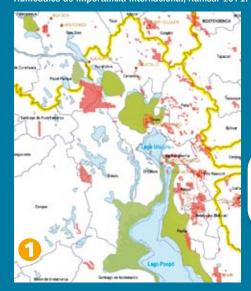
El derecho minero (concesión o contrato) otorga a los mineros la posibilidad de hacer uso de las fuentes de agua sin mayor requerimiento, requisito o consulta; ni a instancias gubernamentales ni a comunidades usuarias, sean pueblos indígenas originarios campesinos o no.

ÁREAS MINERAS A 2014:

- Otorgada a Cooperativa
- Solicitada por Cooperativa
- Otorgada a Minería mediana / Unipersonal
- Solicitada por Minería mediana / Unipersonal
- COMIBOL

Ríos afectadas

Estos lagos y lagunas representan más del 53 % de la superficie total de lagos y lagunas en Bolivia. Algunos de los lagos y lagunas más importantes son: Lago Titicaca, Lagos Poopo y Uru Uru, Laguna Celeste y Laguna Verde (los tres primeros sitios RAMSAR)


Esto implica que los mineros con derechos mineros en estas zonas pueden usar libremente del agua de estos ríos, lagunas y lagos

Gran parte del agua ya está bajo el control de la minería

15 Humedales están superpuestos con áreas mineras (Datos al 2013).

LOS HUMEDALES son zonas de la superficie terrestre temporal o permanentemente inundadas, reguladas por factores climáticos y que por sus características específicas son vitales para los seres vivos que la habitan (muchos de ellos especies endémicas); conformando en sí o siendo esenciales para los ecosistemas donde se encuentran. En Bolivia están protegidos por Ley 2357 y la Convención Relativa a los Humedales de Importancia Internacional, Ramsar 1971.

Áreas Mineras Humedales PANDO BEN SANTA C CHUQUISACA Incluidos El Pantanal

Estos humedales que abarcan
3.396.322,24 Ha. representan
el 44,6% de la superficie del total de
humedales en Bolivia (Datos al 2013)

Incluidos El Pantanal en Santa Cruz, las Llanuras Inundadas de la zona Sureste del Beni, los Lagos Uru Uru y Poopó en Oruro

 Esto implica que las ACTIVIDADES MINERAS con concesiones en estas zonas pueden usar libremente el agua de estos humedales con preocupantes impactos sobre los mismos.

Número de áreas mineras con fuentes de agua superficiales (río, lago, laguna)

1512

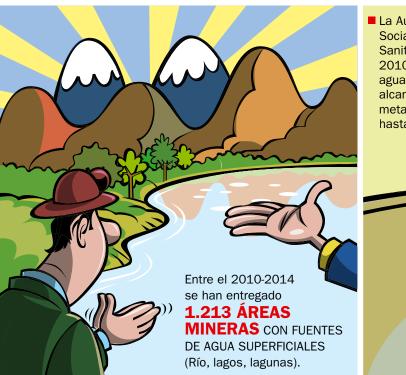
Mineria mediana Unipersonal

Cooperativas

Estatal

Estatal

309


En los últimos 4 años (entre 2010 y 2014) el actual gobierno ha seguido otorgando áreas mineras que incluyen el control sobre fuentes de agua, favoreciendo de manera especial a 672 cooperativas:

Los departamentos más afectados han sido La Paz y Potosí, aunque el incremento en Santa Cruz ha sido de casi el 43%

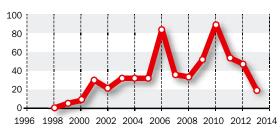
LA PAZ POTOSÍ SANTA CRUZ

¿Y el agua para la vida?

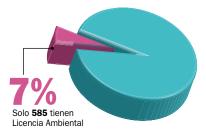
A pesar de las movilizaciones y luchas sociales, del derecho humano al agua reconocido por las Naciones Unidas y del derecho al agua para la vida reconocido por la Constitución Política del Estado (2009), en los últimos años se han entregado más áreas mineras con fuentes de agua (rio, lagos, lagunas) que derechos de uso de aguas para consumo doméstico o riego.

iii¿y dónde quedó el derecho humano al agua y a la alimentación?!!!

La política ambiental en minería


La política ambiental minera en la Ley 535 de Minería y Metalurgia (y en todas las normas previas), se remite al cumplimiento de la Ley 1333 de Medio Ambiente y sus reglamentos específicos. Esta norma ambiental ya tiene más de 20 años aplicándose y no parece funcionar para evitar que el medio ambiente y la vida salgan irreversiblemente dañados...

La Ley de Medio Ambiente es realmente "eficiente"?


La Licencia Ambiental tan solo precautela una gestión ambiental en el marco de la normativa para un perímetro de 5 km a la redonda de la operación minera, dejando fuera cualquier daño ambiental más allá...

La Ley 1333 establece varios criterios, condiciones y parámetros para garantizar que los impactos ambientales de cualquier actividad no afecten a los ecosistemas y la salud de las personas y seres vivos que habitan esos ecosistemas. Para este propósito establece que TODAS las actividades deben obtener una LICENCIA AMBIENTAL que garantiza se esté cumpliendo con la norma ambiental. Esta Licencia Ambiental expresada ya sea por una Declaratoria de Impacto Ambiental (DIA), Certificado de Dispensación (CD) o Declaratoria de Adecuación Ambiental (DAA).

Entre 1998 y 2013, solo 585 actividades mineras cuentan con Licencia Ambiental

De 8.249 áreas mineras vigentes...

Política ambiental minera

Desregulación ambiental y complicidad estatal

Con excepciones o vacíos legales la Ley 535 de minería y metalurgia permite el uso de fuentes de agua estratégicas y ecológicamente vulnerables.

- · El área de glaciares de la Cordillera de Apolobamba ha reducido en un 46.08% entre 1975-2010 (Latterman 2011).
- · Los glaciares de Tuni y Condoriri han reducido en 44% v 55% respectivamente entre 1956-2007
- · Los glaciares del Mururata se han reducido en 20,13% entre 1940-2006; mientras que los del Illimani han reducido su volumen hasta en 9.7% entre 1985-2006 (Vilela 2011).

Glaciares amenazados no solo por el cambio climático

En Bolivia están casi el 20% de los glaciares tropicales del mundo. Los glaciares tropicales destacan por su vulnerabilidad va que los meses de lluvias en estas zonas coinciden con el verano y con mayor radiación solar, sumando los fenómenos climáticos del Niño y la Niña. Esta vulnerabilidad hace que ya exista un importante retroceso de los glaciares mayores y la desaparición de varios pequeños glaciares, entre los cuales está el más conocido y estudiado Chacaltaya.

Los impactos de su retroceso, desaparición y/o contaminación son diversos:

- · Disminución de una reserva de agua. Es el caso del Tuni-Condoriri que aporta hasta un 40% del agua para las ciudades de La Paz y El Alto.
- · La generación de Lagunas glaciares con altos riesgos de inundaciones por derrames como el ocurrido en la comunidad Keara en Pelechuco-La Paz.
- Impacto en actividades pecuarias vitales para las comunidades cercanas.
- · Impactos sobre los ecosistemas.

El cambio climático y el fenómeno del Niño son algunos de los más importantes riesgos para los glaciares (la temperatura se incrementa entre 0.32 - 0.34°C/década, comparado con 0.1°C/década que se registraba después de 1939. (Hoffmann 2011)

Pero ; la minería es otro de los grandes riesgos!

- Construcción de caminos o plataformas sobre glaciares o cercanos a ellos -el polvo generado al cubrir el glaciar acelera su derretimiento-.
- Derrames de aceite, hidrocarburos u otras sustancias tóxicas.
- Remoción masiva de hielo con maquinaria pesada.
- La generación de zonas de depósito de desechos encima o cercanos a glaciares.
- La contaminación y acidificación de las aguas. (Larraín 2011)

En Bolivia, algunos casos de minería en o cercana a glaciares son: Cooperativa aurífera "Flor de Nevado" en la Montaña Presidente cercana a Pelechuco-La Paz, Mina Himalaya en el Illimani, Mina Bolsa Negra en el Mururata entre otras.

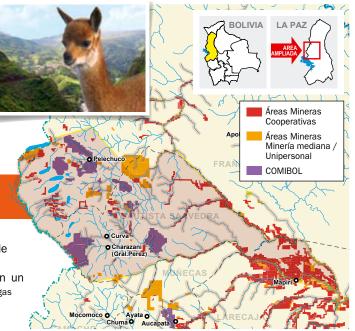
Desvío de cursos de agua

Amenaza a la vida, a los ecosistemas y la propia soberanía nacional

La Ley de Minería y Metalurgia permite el desvío de cursos de agua (art. 112, art. 93 III c) ya sea para que los operadores mineros sin fuente de agua obtengan el agua fuera de su área minera o para hacer minería en el mismo río (el caso de la minería del oro).

Areas protegidas ¿protegidas de la minería?

La Ley minera también permite la actividad minera en áreas protegidas (art. 220), si bien con la condición que cumplan la Ley de Medio Ambiente, en los hechos ya existen gran cantidad de actividades mineras en áreas protegidas, constituyendo una seria amenaza para su objetivo de proteger!!!


Caso de Área Natural de Manejo Integrado Apolobamba (ANMI Apolobamba)

En Apolobamba el propio Estado identificó vacimientos de oro supuestamente con una ley de hasta 300 mg Au/m³ y vida útil de 10 años. (Peñarrieta Venegas y Vilegas Flores 2011, 102)

En el periodo 1997-2007, la minería en la zona incrementó en un 300% (de 16 a 48 operaciones mineras). (Peñarrieta Venegas & Vilegas Flores, 2011)

Para el 2011 ya se identificaron hasta 100 operaciones mineras (Acosta, y otros, 2011), varias de ellas en Zona de Protección Estricta. Los problemas ambientales estrechamente vinculados con la explotación aurífera son:

- · Contaminación del agua con mercurio (existen datos de hasta 28 kg/mes para producir 14 kg/mes de oro).
- lodificación de los ríos.
- Descarga de colas o residuos mineros en bofedales cercanos.
- Disminución del área de pastoreo de 30.141,1 a 22.062,5 Has. entre 1997-2007.
- Disminución del área de cuerpos de agua de 1.773,1 a 1.602,6 Has, entre 1997-2007.

Al 2014 existen 268 áreas mineras, de las cuales 172 fueron entregadas después del 2010.

Sujeto minero	Áreas Mineras vigentes	Superficie (Has)	Áreas Mineras entregados desde 2010
Cooperativa	187	56.200,00	164
Unipersonal/ Min. mediana	60	25.950,00	8
Estatal	21	36.725,00	
Total general	268	118.875,00	172

Fuente: SERGEOTECMIN 2014 y Subsistema de Información Territorial de Apoyo a la Producción (SITAP) 2009)

¿Qué se hizo hasta ahora para remediar ambientalmente los daños de la minería?

Estas obras son:

- · En su mayoría (8 centros mineros y 75% del presupuesto invertido) obras de mantenimiento o prevención de mayores afectaciones a diques de colas; obras que con un adecuado diseño y con la previsión de monitoreo y mantenimiento no hubieran sido necesarias.
- · Las restantes sí son obras de reubicación de pasivos v/u obras hidráulicas para evitar contaminación a las fuentes de agua y a poblaciones cercanas (25% del presupuesto); sin embargo respeto a estas últimas cabe preguntar y ¿dónde están los responsables de estos pasivos? ¿Por qué tiene que ser el Estado quien asuma sus responsabilidades?
- La Dirección de Medioambiente DIMA COMIBOL hasta el 2010 realizó el estudio de impactos ambientales en 7 centros mineros, número reducido frente a las 44 propiedades que COMIBOL administra.
- · La inversión de COMIBOL en **OCHO AÑOS** (2002 2010) en remediación ambiental es mínima! Equivalente a:
 - el **70**% de las regalías de la empresas estatales de UN AÑO (2011)
 - el **6**% de las inversiones públicas presupuestadas en minería de UN AÑO (2011)
 - el **2.6**% de la producción de la minería estatal de UN AÑO (2011)
- · No existe información sobre lo que las empresas o las cooperativas hicieron en cuanto a remediación ambiental.

QUÉ SE HIZO?

Entre el 2002 y el 2010 la dirección de Medio Ambiente de la COMIBOL ejecutó 13 obras de remediación por un total de \$us 6.587,719,31 de los cuales \$us 4.611,403,51 (70%) fueron financiados por el Reino de Dinamarca y \$us 1.976.315.79 (30%) de COMIBOL. Estas obras se concentraron en los siguientes centros mineros:

LA PAZ Matilde, Viloco

Morococala, San José, Santa Fe

Colquechaca, La Palca, Santa Ana - Chocaya, Tasna, Tatasi, Telamayu

 Ciudad, población Fotos y fuente: DIMA-COMIBOL: 2009 COCHABAMRA Caracollo San Fe Colquechaca San José SUCRE Challapata 9 La Palca Uyuni Tasna Chocaya

Acciones que por mucho son insuficientes para cumplir su rol de velar el cumplimiento de lá normativa ambiental.

Tupiza

Proyectos ejecutados 2002-2005

Proyectos en ejecución 2006-2010

Lo que se viene con la minería y el agua

Si bien ahora los mineros deben obtener autorizaciones de agua para uso minero del MMAyA (art. 111), el antecedente negativo en términos de calidad ambiental de la Ley 1333 y las Licencias Ambientales también a cargo del MMAyA, las sobreposiciones de derechos de uso de aguas entre mineros y sistemas de riego, áreas protegidas, glaciales SON MUESTRAS CLARAS que la política minera de uso del agua no cambiará. La Ley 535 de Minería y Metalurgia consolida una política que: entrega el control de un recurso estratégico como es el agua al sector privado en detrimento de la propia población boliviana v de usos vitales como el consumo doméstico y agropecuario; degrada el medio ambiente, los ecosistemas y la Madre Tierra; y atenta contra derechos humanos individuales v colectivos para beneficiar a capitales privados.

Otro aspecto no considerado aun es el pago por el uso del agua. A nivel internacional y principalmente desde Bolivia se ha debatido alrededor del pago por el uso del agua y la mercantilización que ésta conlleva. Sin embargo el uso lucrativo del agua por la minería, la dependencia del aparato público de las rentas y regalías serán tema de conflicto en esta discusión.

BIBLIOGRAFÍA

ACOSTA, J., Martinez Maritnez, S., Faz, A., Millan, R., Muñoz, M., Teran, T., & Vera, R. (2011), Caracterización de la contaminación potencial por mercurio en el área minera de Apolobamba. Bolivia. Spanish Journal of Siol Science, 86-98.

ANAYA Garduño, Manuel, y Jose Juan Martinez. Manual. Sistemas de captación y aprovechamiento del agua de Iluvia para uso doméstico y consumo humano en América Latina y el Caribe. México: Centro Internacional de Demostración y Capacitación en Aproyechamiento del Agua de Lluvia - PNUMA, 2007.

ASCARRUNZ, Maria Eugenia, y otros. Daño genotóxico por contaminación minera en Oruro. Oruro: PIEB, 2010.

CAICHOCA Calle, Jaime, Contaminación ambiental en Oruro (Bolivia). Presentación, Oruro: CEPA, 2012.

CALIZAYA Terceros, Andres, Water Resources Management Efforts for Best Water Allocation in the Lake Poopo Basin, Bolivia, Doctoral Thesis, Sweden; Department of Water Resources Engineering, Lund Institute of Technology, Lund University, 2009.

COMIBOL & Swedixh Geological AB. Auditoria Ambiental de la mina Huanuni. Informe Parte I, s.I.: COMIBOL - Swedixh Geological AB, 1995.

DIAZ Cuellar, Vladimir. «La minería bajo el dominio de las transnacionales.» Petropress, Nº 25 (Junio Julio 2011).

DIAZ, Cuellar Vladimir, «Breve historia de la minería en Bolivia II.» Editado por CEDIB. Petropress, Nº 27 (Noviembre 2011): 29-31.

DIMA - Comibol. Memoria institucional 2002-2009. Proyecto: Centro Minero Huanuni. 2012. http://www.dimacomibol.org/es/proyectos/otros?id=19 (último acceso: 23 de Noviembre de 2012).

ESTADO Plurinacional de Bolivia, «Decreto Supremo Nº 0335». La Paz, 21 de Octubre de 2009.

FAO. Review of world water resources by country. Roma: FAO, 2003.

GANDARILLAS, Marco. «La orientación extractivista de la inversión pública.» Petropress Nº28 (Mayo-Junio 2012): 6. HOFFMANN, D. (2011). Cimate change induced glacier retreat and risk management Glacial Lake Outburst Floods (GLOFs) in the Apolobamba mountain range, Bolivia, La Paz: Instituto Boliviano de la Montaña - BMI.

INSTITUTO Boliviano de Ciencia y Tecnología Nuclear Centro de Investigaciones Nucleares. Erosión de suelos en Bolivia. Presentación, La Paz: s.e., 2009.

INSTITUTO NACIONAL DE ESTADÍSTICA (2013), principales resultados del Censo Nacional de Población y Vivienda 2012 (CNPV 2012). La Paz: INE.

LA PATRIA. «SeLA-Oruro prevé incrementar esta gestión la producción de agua potable.» La Patria, 31 de Marzo de 2012.

LA PATRIA, (31 de Marzo de 2012), SeLA-Oruro prevé incrementar esta gestión la producción de agua potable.

LARRAÍN, S. (2011). Glaciares: Reservas estratégicas de agua dulce para la sociedad y los ecosistemas en Chile. En M. Paz Aedo, & T. Montecinos , Glaciares Andinos Recursos Hídricos y Cambio Climático: Desafíos para la Justicia Climática en el Cono Sur (págs. 23-40). Santiago de Chile: Programa Chile Sustentable.

LAYME, Felix. Impactos de la minería y los procesos de defensa de las comunidades afectadas en el departamento de Oruro, Presentación en 3er, Encuentro Nacional ANARESCAPYS-CONAMPROMA, Sucre: CORIDUP-CEPA. 2012.

LATTERMAN, L. (2011). Analysis of Glacier recession in the Cordillera Apolobamba, Bolivia 1975-2010, s.l.: Texas A&M University.

LEMAN Consulting Group S.R.L. Informe descriptivo de los recursos hídricos 2010, MINERA SAN CRISTOBAL S.A. La Paz: Extend Comunicaciones Bolivia, 2010.

LILJA, Anders, y Greger Linde. Occurrence and distribution of heavy metals in three rivers on the Bolivian high plateau. A minor field study conducted in Bolivia Master of Science Thesis in Environmental Engineering, Lund: Division of Water Resources Engineering, Lund Institute of Technology, Lund University, 2006.

LÓPEZ, Elizabeth, Ángela Cuença, Silvana Lafuente, Emilio Madrid, y Patricia Molina. El costo ecológico de la política minera en Huanuni y Bolivar. Oruro: PIEB, 2101.

MEDINA Hovos, Richard Ivan, v Alfons J.P. Smolders, «Contaminación del Río Pilcomayo y el Moderno Proceso de Flotación en el Distrito Minero de Potosí- Bolivia: Una propuesta metodológica de evaluación de la contaminación minera.» Ponencia en el Master en Ingeniería del Agua Grupo TAR - U.S. Los Palacios, Sevilla, España, Sevilla; s.e., 2005. 10.

MILLER, J.R., K.A. Hudson Edwards, P.J. Lechler, D. Preston, y M.G. Macklin. «Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomavo basin, Bolivia, Science of the Total Environment. Nº 320 (2004): 189-209.

MINISTERIO de Medio Ambiente y Agua. Propuesta de Plan estratégico de Cuencas Mineras (CM) en el marco del PNC. La Paz: MMAvA. s.f.

MINISTERIO de MedioAmbiente y Agua. Plan Nacional de Saneamiento Básico 2008-2015. La Paz: MMAyA, 2008.

MINISTERIO de Minería y Metalurgia, (2010), Informe de Gestión 2010 del Ministerio de Minería y Metalurgia. La Paz: MMM.

MINISTERIO de Minería y Metalurgia. Estadísticas del sector minero. Información en web MMM, La Paz: MMM,

MINISTERIO de Minería y Metalurgia. Informe de gestión 2010, La Paz: MMM, 2010.

MINISTERIO del Agua. Plan Nacional de Desarrollo del Riego "Para Vivir Bien" 2007-2011. La Paz: MdA, 2007.

MINISTERIO de Desarrollo Rural y Tierras, 2012. Compendio Agropecuario. Observatorio Agroambiental y Productivo 2012, La Paz: MDRvT.

MINISTERIO de Minería y Metalurgia, 2014. Informe Ministerio Minería y Metalurgia, Gestión 2013. Documento 3: Estadísticas del Sector, Anexo B. La Paz: MMM.

MIRANDA, Marta, David Chambers, y Catherine Coumans. Framework for Responsible Mining: A Guide to Evolving Standards, S.L.: CSP2-WWF, 2005.

MITSUI Mineral Development Engineering Co. Ltd, UNICO International Co., Ltd. The study on evaluation of environmental impact of mining sector in Potosi prefecture of teh Republic of Bolivia. Estudio de evaluación de impacto ambiental realizado, Potosí: JICA - Prefectura de Potosí, 1999.

MONTOYA Choque, Juan Carlos, v otros, KIMSA JALSURI. Evaluación Ambiental de Pacopampa - Sora Sora, subcuenca Huanuni - Oruro. Oruro: LIDEMA-CEPA-UTO-DICVT FACV-CORIDUP-IDA, 2011.

MORAN, R. Minando el agua: la Mina San Cristóbal FRUTCAS-FSUMCAS-CGIAB-CENDA-CESU-CEDIB, 2009.

NAVARRO Torres, V.F., G. Zamora Echenique, y R.N. Singh. «Environmental Hazards Associated With Mining Activities in the Vicinity of Bolivian Poopó Lake.» Journal of Mining & Environment 3, Nº 1 (2012): 15-26.

PEÑARRIETA Venegas, L., & Vilegas Flores, K. (2011). Explotación aurífera en el ANMIN Apolobamba. Introducción al Conocimiento del Patrimonio Geológico y Minero de Bolivia . 99-116.

PMA, SINNSAT, UPAE. Análisis y Cartografía de la vulnerabilidad a la inseguridad alimentaria en Bolivia. La Paz: PMA-SINSSAT-UPAE-FAO-VAM, 2002.

QUIROGA, Roberto B., Luis Alberto Salamanca, Jorge C. Espinoza Morales, y Gualberto Torrico C. Atlas de amenazas, vulnerabilidades y riesgos de Bolivia, La Paz: Plural, 2008.

RAMIREZ, F. (2007), Impacto del Cambio Climático sobre la Disponibilidad de Recursos Hídricos, En J. Choquehuanca, M. Zuazo, D. Hoffmann, D. Saginés, & R. Olivares, MEMORIA DEL FORO-DEBATE. "Retroceso de los Glaciares y Recursos Hídricos en Bolivia - De la Investigación a la Acción" (págs. 19-30), La Paz: BIM-INWENT,

RIBERA Arismendi, Marco Octavio. El sector minero. Análisis crítico y problemáticas socioambientales de: Megaproyecto Mutún, Cuenca del Poopó, Cuenca del Pilcomayo, Megaprovecto San Cristóbal, La Paz: LIDEMA, 2010.

SERGEOTECMIN. (marzo de 2014). ATE`s_Contratos y Solicitudes mineras. ATE's Contratos y Solicitudes mineras. La Paz: SERGEOTECMIN.

SUBSISTEMA de Información Territorial de Apovo a la Producción (SITAP), (31 de diciembre de 2009), Mapa digital de ríos menores. Mapa digital de ríos menores. La Paz: SITAP.

UTO. Plan de manejo integral de la cuenca del río San Juan del Sora Sora, Resumen ejecutivo, Oruro: UTO- Prefectura del Departamento de Oruro, 2008

VANDECASTEELE, C. «Generation of minewater, its impact on the aquatic environment and remediation» En Congreso Internacional sobre Desarrollo, Medio Ambiente y Recursos Naturales: Sostenibilidad a Múltiples Niveles y Escalas, editado por Jan Feyen, Luis F. Aguirre y Mónica Moraes R., 717-725. Cochabamba: Universidad Mayor de San Simón,

VERZAT, Benoit. Contaminación minera y resultados de la campaña de agua y sedimentos realizada en la Cuenca alta del río Pilcomayo. Tarija: Proyecto de Gestión Integrada y Plan Maestro de la cuenca del Río Pilcomayo, 2006.

VICEMINISTERIO de Recursos Hídricos y Riego . (2012). Inventario Nacional de Sistemas de Riego 2012. Cochabamba: MMAvA.

VILELA, M. (2011). Retroceso de glaciares tropicales en Bolivia: Problemática y Desafíos. En M. Paz Aedo, & T. Montecinos, Glaciares Andinos, Recursos Hídricos y Cambio Climático: Desafíos para la Justicia Climática en el Cono Sur (págs. 49-58). Santiago de Chile: Programa Chile Sustentable.

WIKIPEDIA. List of countries by total renewable water resources. Junio de 2008

http://en.wikipedia.org/wiki/List of countries by total enewable water resources (último acceso: 14 de Noviembre de 2012).

Cartillas Gráficas de Información y Análisis

Autor: Oscar Campanini Gonzales

Edición: Georgina Jiménez, Marco Gandarillas, Jorge Campanini, Miguel Miranda.

Edición Gráfica: Efrain Ramos

O copyleft

CEDIB. Centro de Documentación e Información Bolivia

Calama E-255, Tels: (4)4257839 - (4)4252401

Cochabamba - Bolivia, 2014

www.cedib.org

Pueblo y Soberanía, es una serie de cartillas gráficas de información y análisis producida por el área de trabajo de "Investigación y Recursos Naturales" del Centro de Documentación e Información Bolivia CEDIB y es un esfuerzo institucional por hacer llegar información, elementos de análisis, debate y posicionamiento a los sectores sociales del país, contribuyendo de esa forma a la histórica lucha del pueblo boliviano en defensa de la soberanía, los recursos naturales y los intereses mayoritarios del legítimo desarrollo nacional.

La serie de Cartillas Pueblo y Soberanía, aborda temas relacionados con los recursos naturales vinculándolos en el contexto coyuntural y en el contexto estructural del país y aborda los sub temas de:

Minería Hidrocarburos Tierra y Territorio Resistencias Coyuntura

PUEBLO //, SOBERANIA

Esta publicación es posible gracias al apoyo de:

